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A B S T R A C T

Design flood values give estimates of flood magnitude within a given return period and are essential to making
adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Many hydrologic
applications where flood retention is important, e.g. floodplain management and reservoir design, need design
flood values for different durations. Flood–Duration–Frequency (QDF) models extend the standard statistical
flood frequency analysis framework to multiple flood durations and are analogous to intensity–duration–
frequency models for precipitation. Implementations of QDF models commonly assume simple scaling, where
only the magnitude of the index flood is assumed to change with duration, despite empirical analyses showing
a more complex dependence structure. We propose a multiscaling extension to existing QDF models where
the magnitude of the index flood and the slope of the growth curve may scale independently with duration.
In an application to 12 locations in Norway, we assess how three different QDF models capture relationships
between floods of different duration. Incorporating duration dependency independently in both the index flood
and the growth curve (extended QDF model) improves modeling of both short-duration events and events with
long return periods. This model extension further expands the models’ ability to simultaneously model a wide
range of durations. As measured by the integrated quadratic distance, the extended QDF model performs better
than the original QDF model in 83% of the out of sample subdaily durations studied. Additionally, we find
that the choice of durations used to fit QDF models is a highly influential aspect of the modeling process.
1. Introduction

Floods are a widespread and costly threat to society worldwide.
Their destructive capacity is likely to increase in the near future due
to a rise in both the prevalence of floods under climate change and an
increase in the economic value of flood-prone areas (Alfieri et al., 2017;
Field et al., 2012). Estimation of design floods is an important aspect
of societal adaptation to increased flood risk. Such estimation can be
undertaken in one of three general ways, e.g. Filipova et al. (2019):
(1) statistical flood frequency analysis (FFA), where observed historical
flood events are used to estimate the magnitude of flood events with
a certain return period, (2) event-based hydrological modeling for a
single design event, where design rainfall or other single realizations
of initial conditions and precipitation are used as input to a hydro-
logical model that simulates the desired flood event and (3) derived
flood frequency methods, which use weather generators coupled with
hydrologic models to simulate long series of synthetic discharge that
can be used to statistically estimate the desired return periods. The first
approach—statistical FFA—is the focus of this paper.

∗ Corresponding author at: Norwegian Water Resources and Energy Directorate, P.O. Box 5091 Majorstua, NO-0301 Oslo, Norway.
E-mail address: daba@nve.no (D.M. Barna).

Flood–Duration–Frequency (QDF) models extend the standard sta-
tistical FFA framework to multiple flood durations and are analogous
to Intensity–Duration–Frequency (IDF) models for precipitation. Many
hydrologic applications where flood retention is important, e.g. flood-
plain management and reservoir design, need flood estimates for dif-
ferent durations. Typically, the annual maxima used in QDF model-
ing are sampled from discharge series averaged over different dura-
tions (Javelle et al., 2002; Cunderlik and Ouarda, 2006). This means
that the duration 𝑑 represents the total flow volume for a time span of 𝑑
hours, not flood events that lasted precisely 𝑑 hours. This aggregation-
based approach to obtaining annual maxima means QDF models pro-
vide an accessible way to get relationships between total flow volumes
and durations for applications where the total volume of water is of
interest.

In the QDF approach, an extreme value distribution (usually the
generalized extreme value, or GEV, distribution) is fit to annual maxima
from different durations. Then the relationship between the durations
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and the fitted distributions is described by the QDF model. This allows
for the quantiles of the distribution to be parametrically expressed as
a continuous formulation of both return period and duration, where
consistency between the quantiles of the distribution at different dura-
tions is enforced by the QDF model (Javelle et al., 2002). In practice
this means that, for example, the T-year flood for the mean daily
streamflow time series will never report a higher return level than
the T-year flood for the instantaneous streamflow time series (where
T describes the return period of the flood). Such consistency is not
guaranteed when estimating extreme value distributions individually
for several fixed durations and remains one of the main benefits of QDF
modeling in situations where the return level at several durations is of
interest. In addition, the parametric nature of the QDF model allows
for extrapolation to unobserved durations and establishes the potential
for prediction in ungauged basins (Javelle et al., 2002).

The foundations of QDF modeling were developed in the 1990s
through analysis of the relationships between n-day flood volumes
as explored in Balocki and Burges (1994) and Sherwood (1994). The
original QDF model is generally attributed to Javelle et al. (1999).
QDF modeling has found most of its application in France, Canada and
Britain in the early 2000s (Javelle et al., 2002, 2003; Zaidman et al.,
2003) although it has been applied a handful of times in the decades
since (Cunderlik et al., 2007; Crochet, 2012; Onyutha and Willems,
2015). In a guide to hydrological practices, the (World Meteorological
Organization, 2009) notes that QDF analysis remains under-utilized
despite its strong potential.

In more recent years, the QDF model has been used to characterize
flood events of different duration in Algeria (Renima et al., 2018), to
inform development of a depth–duration–frequency relationship used
to assess risk of rainfall-driven floods in Poland Markiewicz (2021)
and as a comparison point to IDF models when assessing catchment
behavior for runoff extremes in Austria (Breinl et al., 2021). As noted
in Breinl et al. (2021), the relationship quantified by the QDF model
is an analogue to the relationship quantified in IDF modeling for
precipitation extremes: in the hypothetical situation where all rainfall
becomes runoff and the time of concentration is instantaneous, the QDF
and IDF models have identical relationships.

Available QDF models usually assume that only the index flood
changes with duration, with the growth curve assumed constant across
durations (e.g. Javelle et al., 2002; Cunderlik and Ouarda, 2006; Breinl
et al., 2021). Here the index flood is the median annual maximum
flood. The growth curve is a scaled version of the flood frequency curve
created by taking the ratio of the flood of any frequency to the index
flood (Robson and Reed, 1999). The multiplication of the growth curve
and the index flood gives the flood frequency curve. We find it useful to
discuss the flood frequency curve in terms of index floods and growth
curves for a few reasons. First, it clarifies the discussion around an
established problem with QDF models. Second, the concept of the flood
frequency curve as an index flood and a growth curve fits with the
reparameterization introduced in Section 3. Third, this language and
reparameterization of the flood frequency curve aligns with regional-
ization methods; note that growth curves are presented in Dalrymple
(1960) as ‘‘basic, dimensionless frequency curves" allowing for cross
catchment comparisons.

This assumption of constant growth curve across durations contra-
dicts empirical analyses of runoff scaling properties in Norway that
show the ratio between peak and daily floods may be dependent on
return period (Engeland et al., 2020; Sælthun et al., 1997). ‘‘Multiscal-
ing" models that allow for this behavior—that is, models that allow for
the ratio between growth curves of different durations to be dependent
on return period—already exist in the IDF literature (Van de Vyver,
2018; Courty et al., 2019; Fauer et al., 2021). However, in all existing
models the different scaling components are placed on the location and
the scale parameter of the GEV distribution, respectively. This hinders
a direct interpretation in terms of scaling of the index flood on the one
2

hand and the growth curve on the other hand.
Here, we propose a multiscaling extension of the QDF model of
Javelle et al. (2002), where the magnitude of the index flood and the
slope of the growth curve may scale independently with duration.

The natural sparsity of available extreme value data means pa-
rameter estimation is, in general, challenging for extreme value mod-
els (Scarrott and MacDonald, 2012). The additional parameters intro-
duced by multiscaling models compound these challenges (Fauer et al.,
2021). We introduce an alternative parameterization of what we call
the characteristic duration parameters that allows for more numerical
stability. In addition, we adopt a Bayesian estimation approach that
allows for all parameters to be estimated concurrently. Bayesian esti-
mation of IDF models is well established and provides advantages such
as accessible uncertainty assessments, scaling to regional models via
hierarchical Bayesian approaches, and the ability to add information
through prior distributions have been shown to be relevant (Cheng
and AghaKouchak, 2014; Huard et al., 2010). Current QDF models are
typically estimated in a two-step procedure where the characteristic
duration parameter is estimated first, followed by an estimation of the
remaining parameters (Javelle et al., 2002; Cunderlik et al., 2007).
However, such two-step estimation does not typically provide uncer-
tainty information, is difficult to use with multiscaling models, and,
moreover, requires additional assumptions if the model is to be used in
a regional context (Cunderlik and Ouarda, 2006).

Design flood estimation is often most concerned with estimation of
peak discharge. In this case, a statistical estimation poses a challenge
since flood series of length appropriate for statistical FFA often contain
segments at a daily—or coarser—time resolution. This is dealt with
in practice as a data quality issue; most national guidelines for FFA
outline detailed data quality control steps and recommend application
of FFA only when fine resolution time series of suitable length exist,
or when catchment properties are such that daily data can be trusted
to provide a representative profile of the flood peak (Ball et al., 2019;
England et al., 2019; Castellarin et al., 2012). In the situation where we
have neither fine resolution time series nor catchment properties that
allow for construction of the flood peak from daily data, there exist
methodologies for scaling daily data to approximate the instantaneous
peak flow (Ding et al., 2015; Fill and Steiner, 2003).

In Norway, scaling between daily and instantaneous peak flows is
performed by establishing a relationship between the daily flows and
the instantaneous peak flows for the largest floods in the catchment. In
the case where no data is available, the relationship can be provided
by a hydrologically similar catchment. Wilson et al. (2011) notes the
uncertainty in this method is likely to be large and difficult to reconcile
with the uncertainty inherent to FFA. Therefore, it is of interest to
investigate the skill of QDF models to predict floods at subdaily unob-
served durations based on their parametric assumptions and available
coarser-time-resolution data at the site of interest.

To summarize, the main objective of this study is to assess how
different QDF models capture relationships between floods of different
duration. In particular we want to answer the following questions: (i) is
there one QDF model that best captures flood behavior at the shortest
(sub-daily) durations? (ii) what are the models’ abilities when estimat-
ing in sample and out of sample durations? and (iii) how sensitive
are QDF models to input durations? To this aim, we evaluate three
different models, one of which is the original QDF model as presented
in Javelle et al. (2002). The other two models investigated are new
QDF models that allow for differing degrees of duration dependency
in the growth curve. For comparison, three-parameter GEV distribu-
tions are fit independently to each duration in line with the current
guidelines (Midtømme, 2011; England et al., 2019).

The remainder of the paper is organized as follows: Section 2
introduces the data and describes several data artifacts unique to QDF
modeling. Section 3 presents the three QDF models investigated in
this study and details both the Bayesian framework and Markov chain
Monte Carlo (MCMC) sampling. To facilitate both interpretation and
inference, a quantile-based reparameterization of the GEV distribution
is proposed. Section 4 describes QDF model behavior and assesses
performance in relation to locally fit GEV distributions. The paper

finishes with a discussion (Section 5) and conclusions (Section 6).
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Fig. 1. Locations of twelve gauging stations used in study. Catchment area and fraction
of rain contribution to flood are also indicated.

2. Data

The flood data came from 12 streamflow stations in Norway that
have at least 28 years of quality-controlled data with minimal influence
from reservoirs and other installations that might alter the natural
streamflow. See Engeland et al. (2016) for details. All streamflow data
were taken from the Norwegian hydrological database Hydra II hosted
by the Norwegian Water Resources and Energy Directorate (NVE).

The locations of the gauging stations, as well as catchment areas and
flood generating processes, are shown in Fig. 1. The selected stations
are diverse relative to Nordic catchments, allowing us to evaluate the
QDF models on a variety of flood behaviors. See Table D.7 for a listing
of selected catchment properties. The catchment size ranges from 6.31
km2 (Gravå) to 570 km2 (Etna). In Norway the two major flood gener-
ating processes are snowmelt and rain. In Fig. 1 this is illustrated as the
average fractional rain contribution to each flood event. The average
rainfall contribution was estimated by calculating the ratio of rainfall
to total water depth from both rainfall and snowmelt accumulated in a
time window prior to each flood and then averaging these ratios over
all flood events. For details see Engeland et al. (2020). A fraction of rain
value close to one means the floods at this location are primarily driven
by rain; a value closer to zero means snowmelt is the dominant flood-
generating mechanism. Rain was calculated from the precipitation and
temperature from SeNorge 2.0 dataset (Lussana et al., 2019). Snow melt
was extracted from the SeNorge snow model (Saloranta, 2014). In our
dataset the rain contribution varies from 0.32 at Grosettjern to 0.95 at
Røykenes.

2.1. Data quality control

Each of the streamflow records encompasses a variety of collection
methods. These differing collection methods provide data at different
frequencies. Typically we find daily time resolution in the first part of a
streamflow record and a higher frequency of measurements in the latter
3

part of the streamflow record after adoption of digitized limnigraph
records and/or digital measurements.

It is necessary to make sure that the sampling frequency of the
data is high enough to represent peak flood magnitudes with sufficient
quality. This is especially important at small catchments; a higher fre-
quency of measurements is needed to capture the behavior of quicker,
‘‘flashier’’ floods vs slower, smoother floods. In the records for the
smallest catchments, this constraint excludes substantial parts with a
daily sampling frequency. For two large, primarily snowmelt driven
catchments–Etna and Viskvatn–we used the daily data in addition to
the more high-resolution data. The daily data was collected beginning
in 1920 for Etna and in 1903 for Viksvatn. The high-resolution data was
collected from 1983–2022 for Etna and from 1985–2022 for Viksvatn.
For all the remaining stations we used data from approximately 1970
to 2022, which is collected via a combination of limnigraph and digital
readings. Precise record lengths can be found in Table D.7. The time
resolution of the digital measurements and the digitization of the
limnigraph records were selected by NVE to be frequent enough to
represent flood peaks at individual stations.

In addition to quality control on the sampling frequency, the data
have already undergone a detailed quality control by the hydrometric
section at NVE. Ice jams are an issue at many stations in Norway and
may influence the validity of the rating curves used to calculate stream-
flows from measured water levels. When needed, specific correction
procedures (as specified in internal quality assurance protocols at NVE)
have been applied to get correct discharge. Any year with less than 300
days of data was discarded. The final data-set contains no extraordinary
flood events as seen in Appendix E.

2.2. Data processing for QDF

The data set for the QDF analysis is constructed from an evenly
spaced streamflow time series at the reference duration, where the
reference duration is the finest time resolution of interest. Even spacing
in the reference duration is enforced via regular sampling of a linear
interpolation of the observed data.

Let 𝑥0(𝜏) be this time series at the reference duration. A moving
average of window length 𝑑 was applied to 𝑥0(𝜏) to manufacture a new
time series, 𝑥𝑑 (𝑡):

𝑥𝑑 (𝑡) =
1
𝑑 ∫

𝑡+𝑑∕2

𝑡−𝑑∕2
𝑥0(𝜏) 𝑑𝜏 (1)

Block maxima or peak over threshold values can then be extracted from
𝑥𝑑 (𝑡) to form sets of maxima given as:
{

𝑄𝑑,1, 𝑄𝑑,2,… , 𝑄𝑑,𝑘
}

(2)

where, in the case of annual maxima, 𝑘 is the number of years of data.
The width 𝑑 used as the length of the averaging window corresponds
to the duration of interest and the average in Eqn (1) can be repeatedly
applied under different 𝑑 to manufacture new sets of maxima that
correspond to different durations of interest. Under this aggregation
approach, the durations 𝑑 represent the total volume of water that
arrives over a time span of 𝑑 hours, not flood events that lasted
precisely 𝑑 hours.

These sets of maxima produced under different 𝑑 are dependent;
that is, since longer duration series are always aggregated from series
of shorter duration, the values in one set of maxima depend on the
values in the other sets. Recent advances in IDF have focused on use of
multivariate extreme value theory models, which explicitly model this
dependence structure between sets of maxima (Jurado et al., 2020). The
QDF models presented in this study are simpler, so-called ‘‘univariate
extreme value theory models’’ and do not account for this dependence
structure. We use Fig. 2 to justify the choice of the simpler model.

The aggregation to total flow volume over a time span of duration
𝑑 described in Eq. (1) introduces a dependency structure that is nei-
ther predictable nor directly relatable to catchment properties. Fig. 2
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Fig. 2. In QDF modeling, the duration 𝑑 represents the total flow volume for a time span of 𝑑 hours, not flood events that lasted precisely 𝑑 hours. This means longer duration series
re always aggregated from series of shorter durations. This creates a dependency structure that is artificial yet not easily modeled. There are two reasons why this dependency
tructure is not easily modeled, both of which are illustrated in this figure: (i) annual maxima for each duration are not always primarily issued from the same flood event. In
ome cases, these flood events can have completely different generating processes (top panel; the shaded areas show the window of time from which the flood generating process
s calculated) and (ii) annual maxima are not guaranteed to decrease as the duration of the averaging window is increased (see annual maxima at 7 days or greater). Data is from
jodalsvatn gauging station, for the year 2009.
o
g

𝐺

w

𝑧

emonstrates this. First, annual maxima for different durations are in
ome cases primarily issued from the same flood event; however, in
ther cases the maxima at different durations are based on different
lood events with potentially different flood generating processes. In
he first scenario the annual maxima have a strong dependency due
o overlapping temporal support and serial correlation. In the second
here is weak dependency. This presence or absence of this change in
cross duration correlation is not directly relatable to catchment prop-
rties. Second, annual maxima are not guaranteed to decrease as the
uration of the averaging window is increased and the circumstances
hat produce this inconsistent behavior in maxima (for example, two
lood events of similar volume occurring within a short time period of
ach other, or a particularly wide and flat-topped flood event) are also
ot directly relatable to catchment properties.

. Methods

Extreme value theory allows for the estimation of extreme events
y providing a framework for modeling the tail of probability dis-
ributions where such extreme events would lie. Let 𝑋1,… , 𝑋𝑛 be a
et of continuous, univariate random variables that are assumed to be
ndependent and identically distributed. If the normalized distribution
f the maximum max{𝑋1,… , 𝑋𝑛} converges as 𝑛 → ∞ then it converges
o a GEV distribution (Fisher and Tippett, 1928; Jenkinson, 1955).
ee Coles (2001) for further details.

In flood frequency analysis the set of values that is taken to be
istributed GEV is typically the set of annual maxima. The GEV dis-
ribution is governed by a location, scale and shape parameter. The
pecial case where the shape parameter is equal to zero is termed the
umbel, or two-parameter, distribution. Both distributions are used in
uropean FFA and an overview of country specific application can be
ound in Castellarin et al. (2012). Previous research (Castellarin et al.,
012; Midtømme, 2011; Kobierska et al., 2018) recommends the three-
arameter GEV distribution for FFA on individual Norwegian stations.
4

he following QDF models are thus based in the three-parameter form
f the GEV, where the cumulative distribution function of the GEV is
iven as

(𝑧) = exp
{

−
[

1 + 𝜉
( 𝑧 − 𝜇

𝜎

)]−1∕𝜉
}

(3)

hich is defined on {𝑧 ∶ 1+𝜉(𝑧−𝜇)∕𝜎 > 0} with parameter bounds −∞ <
𝜇 < ∞, 𝜎 > 0 and −∞ < 𝜉 < ∞ and where 𝑧 would be the observed
annual maximum streamflow for duration 𝑑 for a specific year. The case
where the shape parameter, 𝜉, is equal to zero is interpreted as the limit
when 𝜉 → 0.

The remainder of this section is organized as follows: first, a
quantile-based reparameterization of GEV distribution is adopted. Then
three different QDF models–one established model and two new
models–are introduced under this reparameterization. Finally, the fit-
ting methodologies and model evaluation metrics are described.

3.1. Reparameterization of the GEV distribution

The parameters of a GEV model are most easily interpreted in terms
of the quantile expressions; traditional descriptors such as the mean and
variance are inappropriate for the skewed distribution of the GEV and,
moreover, are undefined for certain values of the 𝜉 parameter (Coles,
2001). We reparametrize the GEV distribution using the 𝛼 = 0.5
quantile in line with the recent work of Castro-Camilo et al. (2022).
The relationship between the location parameter, 𝜇, and the location
parameter under the reparameterization, 𝜂 (i.e. the median flood), is
given as

𝜂 =

{

𝜇 + 𝜎 log(2)−𝜉−1
𝜉 if 𝜉 ≠ 0

𝜇 − log (log(2)) if 𝜉 = 0.
(4)

Estimates of extreme quantiles are obtained by substituting 𝜂 from
Eq. (4) for 𝜇 in Eq. (3) and inverting the result, giving

𝑝 = 𝜂 + 𝜎

{

(−log(1 − 𝑝))−𝜉 − log(2)−𝜉
}

. (5)

𝜉
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Fig. 3. Return level plots from a synthetic data set showing (i) flood frequency curves estimated independently for four durations (left panel), (ii) output from a simple scaling
QDF model (middle panel), and (iii) output from a multiscaling QDF model (right panel). The independent fits do not account for duration dependency. The simple scaling model
accounts for duration dependence in the magnitude of the index flood but not the growth curve. The multiscaling model accounts for duration dependence in both the magnitude
of the index flood and the slope of the growth curve.
Here, 𝐺(𝑧𝑝) = 1 − 𝑝 and 𝑧𝑝 is the return level associated with the
eturn period 𝑇 such that 𝑇 = 1∕𝑝. Finally, to reduce dependency

between parameters, the scale parameter is decomposed as a product
of the median flood and a remainder term expressed as an exponential
function, 𝑒𝛽 , such that the new scale parameter 𝛽 is given as

𝛽 = log
(

𝜎
𝜂

)

. (6)

The location parameter 𝜂 has a more reasonable interpretation
under the reparameterization in Eq. (5): it is now the median of the
GEV distribution, with units of 𝑚3∕𝑠. Consequently, it is much easier to
choose informative priors under the reparameterization—an important
advantage in a Bayesian framework (Gelman et al., 2013).

In addition to providing interpretable parameters, this parameteri-
zation has the added benefit of aligning with the index flood approach
popular in regional flood frequency modeling, where the median flood
for a group of catchments is taken as a typical, or ‘‘index’’, flood (Dal-
rymple, 1960). Explicitly including the median as a parameter in the
model means the order of magnitude of a flood can be separated from
the shape and slope of the growth curve. This has potential to simplify
the search for regressors in a regional QDF model (Castro-Camilo et al.,
2022).

3.2. Models

This section discusses three competing models. First the original
QDF model from (Javelle et al., 2002) is presented under the repa-
rameterization in Section 3.1. Then the new extended QDF model is
introduced. Finally, a mixture model taking components from both
previous models is introduced. Each of these models introduces addi-
tional parameters to the classic GEV model. The models differ in the
number of additional parameters added, but can all be classified as
duration-dependent GEV, or d-GEV, models.

We motivate the development of the extended, multiscaling QDF
model with Fig. 3.

The leftmost panel of the figure shows several flood frequency
curves estimated independently for four durations. The curves for 48
and 72 h are inconsistent; that is, the 72 h frequency curve crosses
the 48 h curve. Physically, there should not be a larger total volume of
water during a 48 h interval than a 72 h interval. These inconsistencies
can arise when we ignore duration dependence in both the index flood
and growth curve—that is, when we estimate durations independently.

QDF models enforce consistency between flood frequency curves
5

of different duration, as the middle and right panels of Fig. 3 show.
Existing QDF models account for duration dependence in the index
flood but not the growth curve. This is termed ‘‘simple scaling’’ and
is illustrated in the middle panel of Fig. 3. However, ignoring the
effect of duration dependency on the growth curve can lead to poor
estimation in the tails of the distribution. Models that account for
duration dependency in both the index flood and growth curve are
called ‘‘multiscaling’’ models. The extended QDF model accounts for
duration dependency in the growth curve by allowing the both the
magnitude of the index flood and the slope of the growth curve to
change with duration (right panel, Fig. 3).

3.2.1. Original QDF model
The annual maxima under the original QDF model proposed in

Javelle et al. (2002) are independently distributed

𝑄𝑑,𝑖 ∼ GEV
(

𝜂𝑑 , 𝛽, 𝜉
)

(7)

where

𝜂𝑑 = 𝜂 (1 + 𝑑𝛥)−1 (8)

and the quantile function under the reparameterization in Section 3.1
is given as

𝑧𝑑,𝑝 =
𝜂

1 + 𝑑𝛥

[

1 + 𝑒𝛽
{

(−log(1 − 𝑝))−𝜉 − log(2)−𝜉
𝜉

}]

(9)

where 𝛥 > 0. Note the inverse of the characteristic duration param-
eter 𝛥 from Javelle’s original QDF model is used here for numerical
stability during estimation. A high value for 𝛥 indicates the total flow
volume arrives quickly, analogous to a flashy/peaked hydrograph with
a pronounced duration dependency for the median flood, whereas
a value close to zero indicates a slower timespan, analogous to a
wide hydrograph with minor duration dependency for the floods. The
traditional flood frequency curve–that is, a GEV distribution fit to an
instantaneous time series–is recovered in the limit of the aggregation
window as 𝑑 → 0.

In Javelle’s model only 𝜂 is dependent on 𝑑 and 𝛥. This aligns with
the literature base for IDF modeling in the sense that the model can be
written as a separable function of 𝑑 and 𝑝. Notice further that if the 1+
𝑑𝛥 quantity in Eq. (9) was replaced with a power relationship the model
would match that of the IDF models summarized in Koutsoyiannis et al.
(1998). The power relationship and separable functional dependence
of the IDF model has its roots in stochastic process theory, although

the model as typically applied does not rely on this theory base since
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IDF models do not attempt to make explicit mathematical statements
about how the higher order moments (e.g., variance) change with
duration (Koutsoyiannis et al., 1998).

Since only the magnitude of the median flood (𝜂) is duration-
dependent in the model in Eq. (9), the underlying assumption of the
original QDF model is that the slope of the growth curve does not
change with duration.

3.2.2. Extended QDF model
The extended QDF model (referred to as the Double-Delta QDF

model) is structured to be able to capture differences in slope of the
growth curves coming from peak and daily values, or, indeed, values
coming from any two different aggregation intervals. Changing the
steepness of the growth curve dependent on duration requires extra
flexibility in the tail behavior of the model, so the model allows 𝜂 and 𝛽
to depend on the aggregation interval 𝑑 and additional parameters 𝛥1
and 𝛥2, respectively. The 𝜉 parameter is kept duration-invariant due
to the difficulties in estimating the 𝜉 parameter stemming from the
involved parametric form of the CDF (Eq. (3)). Under Double-Delta the
annual maxima are independently distributed as

𝑄𝑑,𝑖 ∼ GEV
(

𝜂𝑑 , 𝛽𝑑 , 𝜉
)

(10)

where

𝜂𝑑 = 𝜂
(

1 + 𝑑𝛥1
)−1 (11)

𝛽𝑑 = log
(

𝜎
𝜂𝑑 (1 + 𝑑𝛥2)

)

(12)

and the distribution’s quantiles for a duration 𝑑 corresponding to
exceedance probability 𝑝 are given by

𝑑,𝑝 =
𝜂

1 + 𝑑𝛥1

[

1 + 𝑒𝛽

1 + 𝑑𝛥2

{

(−log(1 − 𝑝))−𝜉 − log(2)−𝜉
𝜉

}]

(13)

with constraint

0 < 𝛥2 < 𝛥1. (14)

The constraint on the Delta parameters reflects the fact that the data
aggregation performed in QDF modeling (see Section 2.2) is more likely
to have a larger effect on the flood magnitude than on the decomposed
scale parameter. Recall that the value of the 𝛥1 parameter reflects
the ‘‘flashiness’’ of the floods measured; a narrow hydrograph will be
associated with larger values of 𝛥1. The 𝛥2 parameter does not have
an equally accessible hydrologic interpretation but can be interpreted
as a measure of difference in growth curve slope across aggregation
intervals; that is, if the ratio between peak and daily floods is heavily
dependent on return period we would expect to see larger values of 𝛥2.

As the aggregation window shrinks to zero, that is, as 𝑑 → 0,
the Double-Delta model is equivalent to the standard GEV model that
creates the traditional flood frequency curve. Similarly, as 𝛥2 → 0, the
Double-Delta model approaches Javelle’s QDF model. Double-Delta can
thus be considered an extension of Javelle in the same way Javelle is
an extension of the traditional flood frequency curve.

3.2.3. Mixture model
The mixture model is proposed in an attempt to access the flexibility

of the Double-Delta model without adding unnecessary complexity. The
model is a weighted average of the Double-Delta and Javelle models
such that the density of the annual maxima is given by
2
∑

𝑗=1
𝑚𝑗 𝑔(⋅|𝜽𝑗 ) (15)

where 𝑚𝑗 is the weight on the component model, 𝑔 is the density of the
GEV distribution, 𝜽1 = {𝜂 DD

𝑑 , 𝛽 DD
𝑑 , 𝜉DD} and 𝜽2 = {𝜂 J

𝑑 , 𝛽J, 𝜉J}. Here
the superscripts on the parameter sets denote the Double-Delta and
Javelle models, respectively. Using Bayesian methodologies and the
6

reversible-jump algorithm detailed in Section 3.3, parameter estimation
and selection can be carried out simultaneously and the 𝛥2 parameter
is only added if merited.

Thus Eq. (15) is a representation of a non-standard density from
which it is possible to obtain quantile estimates that are an average
over the distributions given by the Double-Delta model in Eq. (10) and
the Javelle model in Eq. (7).

3.3. Bayesian framework

For the Javelle and Double-Delta models, Bayesian inference is per-
formed using a Metropolis-Within-Gibbs algorithm (Robert and Casella,
2004). That is, samples from the conditional distribution of the param-
eters 𝜽1 and 𝜽2, respectively, are obtained by iterative sampling from
he full conditional distributions of the individual parameters so that
ach component of the model is updated in turn. Prior distributions
or the individual parameters assume independence. The prior on 𝜂,
hich has units of m3∕𝑠, is a diffuse truncated normal distribution

runcNormal(40,100) with lower bound at zero. The prior on 𝛽 is a
iffuse Normal(0,100). For 𝜉, we follow the methodology in Martins
nd Stedinger (2000) and use a shifted Beta(6,9) distribution on the
nterval [−0.5, 0.5]. The prior for 𝛥1 in the Double-Delta model, which is
quivalent to the prior for 𝛥 in the Javelle model, is a Lognormal(0,5).
he same values are used in the prior for 𝛥2, which uses a truncated

Lognormal where the lower bound of the prior is given by 𝛥1.
The conditional distribution of the mixture model is given by

𝑝 (𝑚,𝜽|𝐐) ∝ 𝑝(𝑚)𝑝 (𝜽|𝑚) 𝑔(𝐐|𝜽, 𝑚) (16)

here 𝑝(⋅|⋅) is the generic conditional distribution consistent with this
oint specification and 𝑚 ∈ {DD, J}, 𝜽 ∈ {𝜽1,𝜽2}, and 𝐐 = (𝑄𝑑,𝑖)

𝑖=𝑘,𝑑=𝑛
𝑖=1,𝑑=1 ,

here 𝑘 is the number of years of data and 𝑛 is the total number of
urations. The models have equal prior probability, with 𝑝(𝑚 = 𝐽 ) =
(𝑚 = 𝐷𝐷) = 0.5. Simplification of Eq. (16), considering the model
ithout the model specification and separate parameter sets, gives the

onditional distributions of Double-Delta and Javelle.
Moving between models changes the dimension of 𝜽. To account

or this, we employ a reversible jump MCMC algorithm, similar to the
eversible jump methodology for normal mixtures described in Richard-
on and Green (1997). The reversible jump MCMC proceeds as follows:

1. updating 𝜽:

(a) if 𝑚 = DD update 𝜂 DD, else update 𝜂 J;
(b) if 𝑚 = DD update 𝛽 DD, else update 𝛽 J;
(c) if 𝑚 = DD update 𝜉 DD, else update 𝜉 J;
(d) if 𝑚 = DD update 𝛥1 and 𝛥2 parameters in sequence, else

update 𝛥;

2. splitting one Delta into two, or combining two Deltas into one.

Step 1 is repeated 10 times under the same model before Step 2
proposal to jump between models) is taken. Repeating Step 1 for either
he Javelle or Double-Delta model details the MCMC algorithm used to
it the respective model. To move from Double-Delta to Javelle we need
o merge 𝛥1 and 𝛥2 into one 𝛥. The combine proposal is deterministic
nd given by

= 𝛥1 + 𝛥2. (17)

The reverse split proposal, going from Javelle to Double-Delta,
nvolves one degree of freedom, so we generate a random variable 𝑢
uch that

∼ 𝐵𝑒𝑡𝑎(5, 1) (18)

which is then used to set
𝛥1 = 𝑢𝛥

(19)

𝛥2 = (1 − 𝑢)𝛥.
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For this split move the acceptance probability is min {1, 𝐴} where

𝐴 =
𝑝(𝑚′,𝜽′|𝐐)

𝑝(𝑚,𝜽|𝐐)𝑞(𝑢)
|𝐽 | (20)

where 𝑞(𝑢) is the density function of 𝑢 and 𝐽 is the Jacobian of the
transformation described in Eq. (19). The acceptance probability for
the corresponding combine move is min

{

1, 𝐴−1} but with substitutions
that adhere to the proposal in Eq. (17).

3.3.1. Posterior return levels
The Markov chains detailed above return a collection of 𝑅 samples

[𝑟], 𝑟 = 1,… , 𝑅 (21)

here 𝑅 is the total number of iterations in the MCMC with a suitable
umber of burn-in samples removed. Under the mixture model, 𝜽 can
e either 𝜽1 or 𝜽2 dependent on iteration 𝑟, while posterior samples
nder Double-Delta or Javelle will return only 𝜽1 or 𝜽2, respectively.
his Markov sample of the parameter set directly yields, by using the
uantile function in either (9) or (13), a sample of quantiles

(𝑧𝑑,𝑝)[1],… , (𝑧𝑑,𝑝)[𝑅]
}

. (22)

This sample approximates the posterior distribution of the 𝑝th re-
urn level at duration 𝑑. From this sample it is possible to derive
pproximations for the posterior mean and its credible intervals.

.4. Evaluation methods

To assess the models we compare QDF model output to GEV dis-
ributions fit locally to each duration. Comparison is quantified first
hrough the proper evaluation metric integrated quadratic distance
IQD) (Thorarinsdottir et al., 2013). Further, since the IQD is a measure
f overall distributional similarity and is not always sensitive to small
ifferences in tail behavior, we calculate the mean absolute percentage
rror (MAPE) for select high quantiles.

The IQD measures the similarity between two distributions by inte-
rating over the squared distance between the distribution functions.
et 𝐺 be the distribution function defined by the local GEV fit and
QDF be the distribution function defined by the QDF model at the
orresponding duration. In practice we approximate 𝐺 and 𝐺QDF by the

empirical CDF of a sample from the posterior. The distance between 𝐺
nd 𝐺QDF as measured by the IQD is then given by

QD = ∫

+∞

−∞

(

𝐺(𝑧) − 𝐺QDF(𝑧)
)2 d𝑧 (23)

where lower values of the IQD indicate better overall performance.
The IQD is the score divergence associated with the well-known proper
scoring rule the continuous ranked probability score (CRPS); the main
difference between IQD and CRPS is that CRPS calculates the integrated
squared distance between a distribution and a scalar observation speci-
fied by a Heaviside step function whereas IQD calculates the integrated
squared distance between two distributions.

The MAPE provides a measure of similarity as the percent difference
between the local GEV fit and the QDF model. Let 𝑧QDF

𝑑,𝑝 be the return
level at probability 𝑝 for the QDF model evaluated at duration 𝑑,
generated from the approximation to the posterior given in Eq. (22).
Similarly, let 𝑧GEV,d

𝑝 be the return level at probability 𝑝 for the local
GEV fit to data at duration 𝑑. Then the MAPE is given by

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

|

|

𝑧GEV,d
𝑝 − 𝑧QDF

𝑑,𝑝

𝑧GEV,d
𝑝

|

|

|

|

|

|

∗ 100 (24)

where 𝑛 is the number of stations at which we wish to calculate the
7

MAPE.
4. Results

We evaluate three models: the original QDF model (Javelle), the
extended QDF model (Double-Delta), and the mixture model. We first
assess how well the models capture flood behavior for in-sample dura-
tions at a variety of catchments. Then we evaluate which of the models
is most effective at predicting out-of-sample durations, specifically
short (less than 24 h) durations from long durations (greater than or
equal to 24 h). Finally, we compare the models’ estimation abilities at
in- and out-of-sample durations.

Model evaluation is carried out by comparing the QDF models to
a collection of GEV models fit individually to each duration. The IQD
is used to assess model behavior across all quantiles; since it has low
tail sensitivity it best captures model behavior where the bulk of our
observations lie (i.e. return periods for which we have observed data).
We turn to the MAPE to assess tail behavior, where both the QDF model
and the reference model are extrapolated beyond the range of observed
data.

4.1. Model sensitivity to input durations

The QDF models should be fit with the minimum number of du-
rations needed to ensure converge of the MCMC sampler; feeding too
many sets of dependent data into the model can bias return level
estimates and artificially narrow the credible intervals. The bias is
especially prevalent when the data is generated by aggregating over
a longer time span and the goal is to predict short duration events.

To test this, the models were fit under three different sets of data:
two durations (24 and 36 h); four durations (24, 36, 48, 72 h); and
six durations (24, 36, 48, 72, 96, 120 h). For the two-duration set
the MCMC sampler failed to converge. Results from the other two
sets (‘‘24–72’’ and ‘‘24–120’’) are displayed in Fig. 4. The 24–120 set
provides a comparatively worse fit; the 90% credible interval for the
this set fails to capture the locally fit GEV models (dashed gray lines) for
the 24 and 1 h durations and the return levels are also underestimated
to a greater extent than in the 24–72 set. This behavior is replicated
across all three models and all twelve catchments (results not shown).

4.2. Model performance on in-sample durations

Here, we present results where the three QDF models are compared
against locally fit GEV models at every in-sample duration, where the
in-sample durations are 1, 24, 48, and 72 h. Such an in-sample com-
parison is useful for identifying specific scenarios where QDF models
struggle to fit the data rather than strict model-to-model rankings: since
models with more parameters have an in-sample advantage, Double-
Delta is expected to perform better than either Javelle or the mixture
model. Return level plots displaying the QDF model output and the
reference model at these four in-sample durations are displayed in
Figs. E.12–E.15.

4.2.1. Assessing model behavior using IQD
A comparison of in-sample IQD scores across stations, durations

and methods is given in Fig. 5. The scores are relatively similar across
models–most points fall on or along the diagonals in the two plots
in Fig. 5. As expected, the scores exhibit a slight preference towards
the Double-Delta model, which has the lowest average IQD score at
0.034 (highest distributional similarity to the reference model when all
durations and stations are considered). The mixture model has the next
lowest score at 0.037 and Javelle has the highest score at 0.040.

The analysis shows duration-specific preferences between models.
The Double-Delta model has a better average IQD score than either
Javelle or the mixture model at every in-sample duration where the
average is taken over all 12 stations considered in the study. However,

Double-Delta’s advantage is strongest at the shortest durations. Table 1
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Fig. 4. Return level plots from the Dyrdalsvatn gauging station using the Double-Delta model fit to two different data sets: one set with six durations [24, 36, 48, 72, 96, 120 h]
nd one set with four durations [24, 36, 48, 72 h]. The model fit to the six duration set is both overconfident and biased at shorter durations; the posterior mean return level
stimates are consistently underestimated when compared to locally fit GEV models (dashed gray lines) and the 90% credible interval is artificially narrow and fails to capture
he locally fit model for the 24 and 1 h durations.
Fig. 5. Model-to-model comparison of interquantile distance (IQD) scores for each station and in-sample duration. Lower values of the IQD indicate better performance. The
extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, left panel) and the mixture model (right panel). Notable values are indicated
by gray squares, and are discussed in the main text.
Table 1
Number of stations at which the extended QDF model
(Double-Delta) outperforms a comparison QDF model
as measured by IQD. Here ‘‘MM’’ denotes the mixture
model.

In-sample
duration

Comparison model

Javelle MM

1 h 10/12 10/12
24 h 9/12 9/12
48 h 7/12 7/12
72 h 7/12 8/12

reports the number of stations at which Double-Delta outperforms a
comparison QDF model at each duration.
8

Despite QDF models showing an overall good performance, there
are certain stations where each of the three QDF models differs substan-
tially from the reference model. This behavior is particularly prevalent
for the 1 and 24 h durations at Hugdal Bru, displayed in panel A of
Fig. 6. We suspect the issues with the shorter durations at Hugdal
Bru represent a conflict between the parameter constraints inherent
in the QDF models and the runoff-generating processes for sub-daily
streamflow at this particular station: Hugdal Bru is heavily snowmelt
driven, with a strong diurnal melt pattern. The data averaging used in
QDF modeling smooths out this sub-daily variation, but this relatively
large reduction in variance is not reflected in the parameter constraints
of the QDF model since the primary scaling occurs on the median
flood (a constraint described in Eq. (14)). Thus the behavior of 1 h
floods with return period under 5 years is difficult for the QDF models
to fit. Floods with higher return periods tend to come from larger

precipitation or melting events that supersede the diurnal cycle and
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Fig. 6. Return level plots showing two selected stations where QDF models differ substantially from the reference model on in-sample durations. (A) Hugdal Bru: the 1 h floods
with return period under 5 years are characterized by a diurnal melt-freeze cycle at this snowmelt-driven catchment; 1 h floods with longer return periods come from larger
precipitation or warming events that supersede the diurnal cycle and as such have a more consistent relationship with longer durations and are more easily characterized by QDF
models. (B) Gryta: the reference models show a change in shape parameter with increasing duration; QDF models cannot capture this behavior as the shape parameter is not
duration dependent.
as such have a more regular relationship between durations. Durations
above 24 h (without the diurnal cycle) also have a more regular
relationship between durations.

The QDF models assume a constant shape parameter across all
durations included in the analysis. As shown in panel B of Fig. 6, this
assumption may lead to estimates that diverge from local duration-
independent estimates where the latter analysis yields substantially
varying shape parameter estimates across the durations. Here, the
individually fit GEV models have shape parameters ranging from 0.140
for the 1 h duration to −0.037 for the 72 h duration. The QDF models
do not have duration dependence built into the shape parameter and
as such must choose one shape parameter for the entire set (in this
case 0.018 for Double-Delta, 0.021 for the mixture model and 0.036 for
Javelle). This inflexibility of the shape parameter is a known limitation
of QDF models but is not easily solved as this parameter faces estima-
tion difficulties due to the involved parametric form of the cumulative
distribution function of the GEV. As a result, the QDF models tend
to underestimate high quantiles for short durations and overestimate
high quantiles for longer durations. Specifically for Gryta, using Javelle
the 1 h duration is underestimated and the 48 and 72 h durations are
both overestimated to a greater extent than we see in the Double-Delta
model.

4.2.2. Assessing model behavior using MAPE
The within-sample MAPE was computed for the 100 year and 1000

year flood events (0.99 and 0.999 quantiles). These quantiles lie beyond
the observed range of data for most of the stations and thus require
extrapolation of both the QDF models and the reference model.

The Double-Delta model has the lowest MAPE at both return periods
when all in-sample durations and stations are taken into account (5.9%
error at the 100 year return period and 10.0% error at the 1000 year
return period). The mixture model has the next lowest MAPE with 6.5%
error at the 100 year return period and 12.1% error at the 1000 year
return period. The Javelle model has the highest MAPE with 7.7% error
at the 100 year return period and 12.1% error at the 1000 year return
period. As with the IQD, the advantage of Double-Delta is strongest at
the shortest durations; Table 2 reports the number of stations at which
Double-Delta outperforms either Javelle or the mixture model.

The addition of the second delta parameter has the most impact
when estimating events with long return periods. We see this in the
differences in behavior of the model-to-model comparisons between the
IQD and MAPE Figs. 5 and 7. Javelle and the mixture model appear
more similar when evaluated by the IQD than they do under the MAPE;
9

Table 2
Number of stations at which the extended QDF model (Double-
Delta) outperforms a comparison QDF model as measured by
MAPE. Here ‘‘MM’’ refers to the mixture model.

In-sample
duration

Comparison model T

Javelle MM

1 h 11/12 11/12

100
24 h 10/12 9/12
48 h 4/12 4/12
72 h 7/12 6/12

1 h 11/12 11/12

1000
24 h 9/12 9/12
48 h 4/12 4/12
72 h 6/12 6/12

that is, using the IQD score the two models have about the same amount
of clustering around the diagonal when compared to Double-Delta. But
using MAPE–which measures differences in tail behavior between the
QDF models and reference model–we see a difference between Javelle
and mixture model when compared to Double-Delta: the values for the
mixture model are much more closely clustered around the diagonal
in Fig. 7 than the values for Javelle. These stations that show an
improvement in MAPE under the mixture model are those that have
a high weight on the second delta parameter.

One of the stations that is most improved by the addition of the
second delta is Gryta (marked by gray squares in Fig. 7). The return
level plots in panel (B) of Fig. 6 show this station in particular benefits
from the adjustment of growth curve slope afforded by the second delta.
The second delta somewhat mitigates the effect of the assumption of a
constant shape parameter across durations. However, even with this
adjustment in growth curve slope both Double-Delta and the mixture
model have high error values for the 1 h duration at Gryta-around
20%–30%.

4.3. Model performance on out-of-sample durations

Here, the models were fit with four durations (24, 36, 48 and 60 h)
and the resulting parameter estimates were used to predict the 1 and
12 h durations. The QDF predictions were compared to locally fit GEV
models using both the IQD and MAPE. Return level plots showing the
reference and QDF models at both out of sample durations are displayed
in Figs. F.16–F.19.
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Fig. 7. Model-to-model comparison of the mean absolute percent error (MAPE) scores for each station and in-sample duration. Lower values of the MAPE indicate better performance.
The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, top panels) and the mixture model (bottom panels). Notable values are
indicated by gray squares, and are discussed in the main text.
Double-Delta has the best average IQD score on the out of sample
durations, reporting a score of 0.34 while the mixture model reports
a score of 0.42 and Javelle reports 0.44. Fig. 8 shows a model-to-
model comparison on the out of sample durations. There are only three
station and duration combinations (both the 1 and 12 h durations at
Sjodalsvatn and the 1 h duration at Dyrdalsvatn and Øyungen) where
Double-Delta performs worse, as measured by the IQD, than the other
two models. These stations are outlined in red in Fig. 8. At every
other station and duration Double-Delta performs the same or better.
All three QDF models provide a poor distributional fit for the sub-
daily durations at Hugdal Bru and the 1 h duration at Røykenes. These
stations are labeled by name in Fig. 8. Difficulties fitting the sub-
daily durations of Hugdal Bru are discussed in Section 4.2.1. The 1 h
duration at Røykenes exhibits a large change in shape parameter with
an increase in duration like the station Gryta shown in panel B of Fig. 6.

Double-Delta has the best average MAPE score on the out of sample
durations (11.1% error at the 100 year return period and 15.4% error
at the 1000 year return period). The mixture model has the next lowest
MAPE with 12.2% error at the 100 year return period and 16.9% error
at the 1000 year return period. The Javelle model has the highest MAPE
with 12.8% error at the 100 year return period and 17.4% error at the
1000 year return period. Double-Delta provides an equal or better fit
at around 80% of the stations and durations at both return periods.
Stations and durations where Double-Delta is outperformed by either
Javelle or the mixture model are outlined in red in Fig. 9.
10
Several of the smallest catchments (Gravå, Gryta and Grosettjern)
have high out-of-sample MAPE values. These three catchments have
some of the highest variation in the shape and slope of the individually
fit GEV models (see Tables A.3 and B.5, where the 𝛽 parameter is taken
as a proxy for slope).

A highly duration-dependent shape parameter is a known challenge
for QDF models (see the scenario in panel B of Fig. 6) and we would
expect the QDF models to struggle to find a shape parameter value
that approximates both the longest and shortest durations even when
these durations are in-sample. Furthermore, not only do we observe a
large shape parameter range but this range crosses zero for both Gryta
and Grosettjern, with the longer durations having a negative shape
parameter while the shorter durations have a positive shape parameter.
This is a substantial difference; a negative shape parameter corresponds
to an entirely different distribution family (Weibull) than a positive
shape parameter (Fréchet) within the GEV family.

Additionally, these three catchments experience the biggest change
in growth curve slope between either the 1 and 24 h duration or the
12 and 24 h duration while the rate of change of growth curve slope
is less for durations above 24 h; that is, there is a change in growth
curve slope in the sub-daily durations that is not replicated in the
longer durations. In summary, we observe high error for out of sample
durations at Gravå, Gryta and Grosettjern because the relationship
between the longer floods used to fit the model does not strongly inform
the relationship between sub-daily floods for these catchments.
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Fig. 8. Model-to-model comparison of interquantile distance (IQD) scores for each station and both out-of-sample durations. Lower values of the IQD indicate better performance.
The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, left panel) and the mixture model (right panel). Stations and durations
where Double-Delta performs worse than the other two models are outlined in red. Stations and durations that are fit particularly poorly by all three QDF models are labeled by
name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Model-to-model comparison of mean absolute percent error (MAPE) scores for each station and both out-of-sample durations. Lower values of the MAPE indicate better
performance. The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, top panels) and the mixture model (bottom panels). Stations
and durations where Double-Delta performs worse than the other two models are outlined in red. Stations and durations that are fit particularly poorly by all three QDF models
are labeled by name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Journal of Hydrology 620 (2023) 129448D.M. Barna et al.
Fig. 10. Comparison of interquantile distance (IQD) score when durations are either predicted (out of sample) or included in the model fitting set (in sample). Lower values of
the IQD indicate better performance. The out-of-sample set was fit with durations 24, 36, 48, 60 h and used to predict the 1 and 12 h durations. The in-sample set was fit with
durations 1, 12, 24, 36, 48, 60 h. Stations and durations that are fit particularly poorly by all three QDF models are labeled by name.
4.4. Comparison of in- and out-of-sample sub-daily estimates

Here, the models were fit with six durations (1, 12, 24, 36, 48,
60 h) where the 1 and 12 h durations are evaluated as in-sample
durations. The output from these models is then compared to the output
from the previous section, where the models are fit on four durations
(24, 36, 48, 60 h) that are used to predict the 1 and 12 h durations.
The performance of each of these sets is evaluated at the 1 and 12 h
durations using both the IQD, as shown in Fig. 10, and MAPE, as shown
in Fig. 11.

The stations that have the greatest loss when going from in-sample
to out-of-sample tend to be stations that already had high IQD or
MAPE values. This means that if there is already a significant difference
between the QDF and reference models this difference is likely to be
amplified when predicting out of sample durations. Most stations and
durations, however, have a relatively moderate loss when moving from
in- to out-of-sample on both the IQD and MAPE (the exceptions to this
are labeled in Figs. 10 and 11). For the MAPE, this difference is on the
order of ±5%.

5. Discussion

We have, in accordance with our main objective, analyzed how
different QDF models capture the relationship between floods of dif-
ferent duration at 12 locations in Norway. By examining differences in
model fit between the three models studied, we identified reasoning
to explain why the extended QDF model (‘‘Double-Delta’’) outperforms
the other two models on the particular stations and durations studied,
and why this performance advantage is particularly pronounced for
situations where the focus is on long return periods and/or short
durations. Additionally, we tested the out-of-sample performance of
QDF models on sub-daily durations by comparing to models fit with
the sub-daily data included; we observed situations where the out-
of-sample set returned evaluation scores that were in line with the
in-sample set but also situations where the ability of QDF models to
predict sub-daily, out-of-sample durations was severely limited. Finally,
we assessed whether the choice of durations used to fit the QDF models
impacts model estimation and concluded QDF models are sensitive to
the durations used to fit them.

The Double-Delta model is what we term a ‘‘empirical multiscaling’’
model, where the main contribution of the proposed model is the ability
to adjust to certain types of changes in dependence structure with
respect to return period. Specifically, it can account for the situation
12
where the ratio between growth curves increases with increasing return
period. The original QDF model (Javelle), on the other hand, assumes
this ratio to be constant. As evidenced by the return level plots in
Figs. E.12–E.15, the assumption of a constant ratio will commonly
not hold, in particular, if the shortest duration of 1 h is included in
the comparison. The additional parameter in the Double-Delta model
allows for a better approximation of the tail behavior, especially for
short durations. Selectively adding the second delta–as the mixture
model does–is not advantageous at the shortest durations as these
durations tend to need maximum flexibility from the QDF models.

We make a distinction here between what we call empirical multi-
scaling and multiscaling in the strict theoretical sense. Strict theoretical
multiscaling models would be, for example, those presented in Gupta
and Waymire (1990) or the IDF models in Van de Vyver (2018). This
distinction is often overlooked in the literature since the parameteri-
zation of empirical- and strict-multiscaling models are in most cases
identical and the theoretical basis matters only for inference. However,
we think it useful to note that the QDF models presented here are
empirical and do not attempt to place strict mathematical assumptions
on how the variance or other higher-order moments change with
increasing duration.

A second important distinction needs to be made between QDF mod-
els and bivariate frequency analyses where the dependence structure
between peak discharge and event duration is explicitly modeled. The
aggregation-based approach to obtaining annual maxima means QDF
models provide an accessible way to get relationships between peak
volume and duration for applications where the total volume of water
is of interest. If singular flood events are the focus—for example, if we
need to know how long a road is closed following a particular flood
event—a bivariate, event-based approach such as one of the copula
models detailed in Gräler et al. (2013) is more appropriate.

QDF models are most useful when three considerations are kept in
mind. Firstly, we found that the choice of durations used to fit the
QDF model was a highly influential aspect of the modeling process.
The particular durations chosen will impact what relationship between
floods the QDF models can identify. In general, QDF models predict
sub-daily unobserved durations just as well as when those durations
are used to fit the model. However, as shown in Section 4.4, it is
possible to select in-sample durations that do not inform the duration
of interest. Avoiding this situation requires careful selection of appro-
priate in-sample durations. Such selection can be guided by design
value application; for example, it is unlikely we would need the 60
or 72 h duration on the smallest catchments in this study and can
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Fig. 11. Comparison of mean absolute percent error (MAPE) when durations are either predicted (out of sample) or included in the model fitting set (in sample). Lower values of
the MAPE indicate better performance. The out-of-sample set was fit with durations 24, 36, 48, 60 h and used to predict the 1 and 12 h durations. The in-sample set was fit with
durations 1, 12, 24, 36, 48, 60 h. Stations and durations that are fit particularly poorly by all three QDF models are labeled by name and dashed lines indicate ±5% difference
from the diagonal.
therefore avoid the somewhat contrived scenarios where we use what
are, for these catchments, only long-duration flood events to estimate
the shortest durations.

Secondly, the range of the selected durations also influences the
QDF model estimates. If the durations selected do not span a wide
enough range the QDF models will struggle to converge (Section 4.1).
However, too wide a range of durations can be challenging for QDF
models if the statistical properties of the floods change significantly
between durations (Section 4.2). We note that problems associated
with the latter situation can be partially mitigated through the extra
flexibility afforded by the extended QDF model (Double-Delta). Thirdly,
we found that generating too many sets of dependent data to fit the
model can produce results that are both biased and overconfident,
particularly when the generated data is aggregated over a longer time
span than the duration of interest (Fig. 4).

The QDF model assumes a constant shape parameter across all
durations, as with nearly all duration-dependent extreme value mod-
els (Fauer et al., 2021). This situation is illustrated in panel B of
Fig. 6. It would be technically possible to add duration dependence
to the shape parameter of the models in Eqs. (9), (13), and (15).
However, the observed difficulties in estimating the shape parameter
in Section 4.3 and the issues documented in Martins and Stedinger
(2000) indicate this approach may be very complex and pose severe
estimation problems. Additionally, observation of the shape parameter
values from individually fit GEV distributions demonstrate the shape
parameter does not appear to change with duration in as structured a
way as either the median flood (𝜂) or the change in slope of the growth
curves (where this change is described in part by 𝛽).

The Double-Delta model is a promising avenue for improved mod-
eling of short-duration events and events with long return periods
under a QDF modeling framework. We identify several areas of future
research. Extending the analysis presented in this paper to include
more gauging stations–including stations in diverse climate regions–is a
priority; while the catchments used in this study are diverse for Nordic
catchments, they are not diverse globally. Additionally, of particular
13
interest is how this extended QDF model will function in a regional
setting; many of the design flood values needed for operational use in
Norway are at ungauged sites or at sites with incomplete or very short
datasets.

Furthermore, it could be beneficial to include a more explicit con-
sideration of flood generating processes within QDF methods; seasonal
needs in reservoir management, for example, can mean that a varying
flood storage capacity needs to be defined within a year. Methods exist
to explicitly account for generating processes in FFA (see, for example,
the mixture models in Fischer, 2018) but are not directly suited to the
aggregation-based methodology underlying QDF. A potential avenue
forward could be definition of seasonal blocks as in Ulrich et al. (2021),
who developed IDF curves with monthly varying parameters.

Additionally, a potential area of improvement for predicting short
durations when the majority of the data is at a daily (or longer) time
resolution is to allow the QDF models to take data where the length
of the data record varies by duration, such that some information on
short durations can be included even if the data for these durations
is relatively scant. Finally, non-stationarity due to climate change will
be an important future area of research for QDF models. While this is
outside the scope of this study, we identify a few references that could
serve as an example for future research. Nonstationarity is addressed for
regional QDF models in Cunderlik and Ouarda (2006) and for regional
FFA models in a Bayesian framework in Guo et al. (2022).

6. Conclusions

This paper proposes a multiscaling extension of the QDF model
of Javelle et al. (2002), where the magnitude of the index flood and
the slope of the growth curve may scale independently with duration.
In the original QDF model only the magnitude of the index flood
scales across durations (Javelle et al., 2002). A Bayesian inference
algorithm is developed where the original QDF model, the extended
QDF model, or a mixture of the two may be estimated. In a case

study comprising 12 study locations in Norway, we analyze how these
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three different QDF models capture the relationship between floods
of different duration. The results suggest it is advantageous to allow
the index flood and growth curve slope to scale independently; that is,
it is advantageous to let the ratio between growth curves of different
duration be dependent on return period. This advantage is particularly
pronounced for situations where the focus is on long return periods
and/or short durations. Thus the extended QDF model is the most
promising avenue for capturing flood behavior at the shortest (sub-
daily) durations. In general, QDF models are generally able to predict
out-of-sample durations with a relatively moderate loss in accuracy
when compared to in-sample estimates for the same durations. How-
ever, we found the QDF framework to be highly sensitive to the choice
of durations used to fit the models. In particular, care should be taken
to fit the QDF models with the minimum number of durations needed
for the inference algorithm to converge. Generating too many sets of
dependent data to fit the model can produce results that are both biased
and overconfident. The extended QDF model has an improved ability
to simultaneously model a wider range of durations when compared to
the original QDF model.

CRediT authorship contribution statement

Danielle M. Barna: Methodology, Software, Formal analysis, Data
uration, Writing – original draft, Writing – review & editing. Kol-
bjørn Engeland: Conceptualization, Funding acquisition, Methodol-
ogy, Writing – original draft, Writing – review & editing. Thordis
L. Thorarinsdottir: Conceptualization, Methodology, Formal analysis,
Writing – original draft, Writing – review & editing. Chong-Yu Xu:
Conceptualization, Methodology, Writing – original draft.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Kolbjorn Engeland and Chong-Yu Xu reports financial support was
provided by Research Council of Norway.
14
Data availability

The flood and hydrological data were extracted from the National
Hydrological Database (Hydra II) hosted by the Norwegian Water
Resources and Energy Directorate (NVE). The 12 stations used in this
analysis are published at https://doi.org/10.5281/zenodo.7085557.

Acknowledgments

This work was supported by the Research Council of Norway
through grant nr. 302457 ‘‘Climate adjusted design values for ex-
treme precipitation and flooding’’ (ClimDesign) and FRINATEK Project
274310. The authors would like to thank Thea Roksvåg and Alex
Lenkoski for valuable discussions and Mads-Peter Dahl for help with
data selection.

Appendix A. Shape parameter values for QDF and reference mod-
els

See Tables A.3 and A.4.

Appendix B. 𝜷 Parameter values for reference models

See Table B.5.

Appendix C. Mean absolute percent error for out-of-sample sub-
daily durations

See Table C.6.

Appendix D. Catchment properties for selected catchments

See Table D.7.
Table A.3
Posterior mean shape parameter values with 90% credible intervals for QDF model fit on durations (24, 36, 48, 60 h) and posterior mean shape parameter values for individually
fit GEV distributions. Stations are in order of catchment area.

Station Individually fit GEV QDF

Duration (h) Model type
1 12 24 36 48 60 DD MM J

Dyrdalsvatn 0.14 0.08 0.06 0.09 0.09 0.08 0.05 [-0.06, 0.17] 0.05 [−0.07, 0.17] 0.05 [−0.07, 0.17]
Gravå 0.18 0.12 0.10 0.07 0.06 0.05 0.04 [−0.07, 0.16] 0.04 [−0.06, 0.16] 0.04 [−0.06, 0.16]
Grosettjern 0.07 0.06 0.05 0.01 −0.01 −0.02 −0.04 [−0.11, 0.04] −0.04 [−0.1, 0.04] −0.03 [−0.1, 0.04]
Elgtjern 0.17 0.16 0.17 0.17 0.16 0.15 0.22 [0.1, 0.33] 0.22 [0.1, 0.33] 0.22 [0.1, 0.33]
Gryta 0.14 0.07 0.03 0 −0.02 −0.03 −0.07 [−0.16, 0.02] −0.07 [−0.16, 0.02] −0.07 [−0.16, 0.03]
Røykenes −0.02 −0.03 −0.05 −0.06 −0.07 −0.07 −0.13 [−0.2, −0.06] −0.13 [−0.19, −0.06] −0.13 [−0.19, −0.06]
Manndalen Bru 0.03 0.04 0.05 0.05 0.06 0.05 0.01 [−0.08, 0.12] 0.01 [−0.08, 0.12] 0.01 [−0.08, 0.11]
Øyungen 0.03 0.03 0.04 0.05 0.05 0.07 0.02 [−0.04, 0.10] 0.02 [−0.04, 0.10] 0.02 [−0.04, 0.10]
Sjodalsvatn 0.11 0.1 0.11 0.11 0.11 0.12 0.11 [0.01, 0.22] 0.11 [0.01, 0.23] 0.12 [0.01, 0.23]
Viksvatn −0.08 −0.08 −0.08 −0.09 −0.1 −0.11 −0.13 [−0.17, −0.08] −0.13 [−0.17, −0.08] −0.13 [−0.17, −0.08]
Hugdal Bru 0.02 0.05 0.05 0.09 0.09 0.09 0.05 [−0.04, 0.15] 0.05 [−0.04, 0.15] 0.05 [−0.04, 0.15]
Etna −0.04 −0.05 −0.06 −0.06 −0.07 −0.08 −0.11 [−0.16, −0.05] −0.11 [−0.16, −0.05] −0.11 [−0.16, −0.05]
Table A.4
Posterior mean shape parameter values with 90% credible intervals for QDF model fit on durations (1, 24, 48, 72 h) and posterior mean shape parameter values for individually
fit GEV distributions. Stations are in order of catchment area.

Station Individually fit GEV QDF

Duration (h) Model type
1 24 48 72 DD MM J

Dyrdalsvatn 0.14 0.06 0.09 0.06 0.06 [−0.05, 0.17] 0.06 [−0.04, 0.17] 0.06 [−0.04, 0.17]
Gravå 0.18 0.10 0.06 0.05 0.13 [0.03, 0.24] 0.14 [0.05, 0.26] 0.15 [0.03, 0.25]
Grosettjern 0.07 0.05 −0.01 −0.03 −0.01 [−0.09, 0.07] −0.01 [−0.08, 0.07] −0.01 [−0.08, 0.07]

(continued on next page)
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Table A.4 (continued).
Station Individually fit GEV QDF

Duration (h) Model type
1 24 48 72 DD MM J

Elgtjern 0.17 0.17 0.16 0.14 0.21 [0.10, 0.33] 0.21 [0.10, 0.32] 0.21 [0.10, 0.33]
Gryta 0.14 0.03 −0.02 −0.04 0.02 [−0.07, 0.11] 0.02 [−0.04, 0.12] 0.04 [−0.06, 0.11]
Røykenes −0.02 −0.05 −0.07 −0.07 −0.11 [−0.17, −0.04] −0.11 [−0.16, −0.04] −0.10 [−0.17, −0.04]
Manndalen Bru 0.03 0.05 0.06 0.04 0.003 [−0.09, 0.11] 0.002 [−0.09, 0.1] 0.002 [−0.09, 0.1]
Øyungen 0.03 0.04 0.05 0.08 0.02 [−0.04, 0.09] 0.02 [−0.05, 0.09] 0.02 [−0.05, 0.09]
Sjodalsvatn 0.11 0.11 0.11 0.12 0.12 [0.01, 0.22] 0.12 [0.01, 0.23] 0.12 [0.01, 0.22]
Viksvatn −0.08 −0.08 −0.10 −0.12 −0.13 [−0.17, −0.08] −0.12 [−0.17, −0.08] −0.12 [−0.17, −0.08]
Hugdal Bru 0.02 0.05 0.09 0.07 0.03 [−0.06, 0.13] 0.03 [−0.06, 0.13] 0.03 [−0.06, 0.13]
Etna −0.04 −0.06 −0.07 −0.07 −0.10 [−0.15, −0.04] −0.10 [−0.15, −0.04] −0.10 [−0.15, −0.04]
Table B.5
Posterior mean beta parameter values for individually fit GEV distributions. Stations are in order of
catchment area.

Station Individually fit GEV

Duration (h)
1 12 24 36 48 60 72

Dyrdalsvatn −1.56 −1.51 −1.4 −1.47 −1.5 −1.51 −1.55
Gravå −1.19 −1.37 −1.46 −1.5 −1.53 −1.53 −1.55
Grosettjern −1.22 −1.25 −1.28 −1.32 −1.34 −1.37 −1.37
Elgtjern −0.98 −1.00 −1.02 −1.06 −1.08 −1.09 −1.12
Gryta −0.92 −0.99 −1.07 −1.14 −1.18 −1.21 −1.25
Røykenes −1.28 −1.29 −1.31 −1.37 −1.44 −1.49 −1.55
Manndalen Bru −1.43 −1.47 −1.47 −1.50 −1.52 −1.51 −1.5
Øyungen −1.06 −1.07 −1.08 −1.10 −1.10 −1.11 −1.13
Sjodalsvatn −1.39 −1.39 −1.41 −1.42 −1.44 −1.47 −1.49
Viksvatn −1.59 −1.59 −1.60 −1.60 −1.61 −1.62 −1.63
Hugdal Bru −1.30 −1.38 −1.35 −1.37 −1.36 −1.34 −1.31
Etna −1.10 −1.11 −1.13 −1.13 −1.14 −1.15 −1.15
Table C.6
Mean absolute percent error (MAPE) for return levels at the 100 and 1000 year return periods. This is the table version of Fig. 9. The MAPE is calculated in regard to individually
fit GEV distributions (see Section 3.4 for details). Here ‘‘MM" denotes the mixture model. Stations are in order of catchment area.

Station Model type

DD MM J

Duration = 1 h Duration = 12 h Duration = 1 h Duration = 12 h Duration = 1 h Duration = 12 h

Return period (years) Return period (years) Return period (years) Return period (years) Return period (years) Return period (years)
100 1000 100 1000 100 1000 100 1000 100 1000 100 1000

Dyrdalsvatn 3.1 5.1 0.3 2.5 7.3 16.0 6.7 10.0 9.9 19.0 8.4 12.0
Gravå 49.0 58.0 25.0 33.0 51.0 61.0 27.0 35.0 51.0 61.0 27.0 35.0
Grosettjern 16.0 25.0 16.0 24.0 19.0 28.0 18.0 27.0 20.0 29.0 19.0 27.0
Elgtjern 10.0 20.0 7.6 18.0 2.0 5.5 0.2 8.7 4.5 2.7 1.8 6.9
Gryta 34.0 49.0 24.0 36.0 37.0 52.0 26.0 38.0 39.0 53.0 27.0 39.0
Røykenes 8.1 0.4 8.0 15.0 3.4 5.7 11.0 18.0 0.7 8.5 12.0 20.0
Manndalen Bru 7.5 9.8 7.0 10.0 11.0 14.0 9.8 13.0 12.0 15.0 10.0 13.0
Øyungen 6.4 6.0 0.4 1.2 2.0 1.1 3.3 4.4 0.9 0.0 4.0 5.2
Sjodalsvatn 2.6 3.3 0.5 1.2 1.6 1.1 2.4 1.9 1.6 1.0 2.4 1.7
Viksvatn 2.9 5.7 3.5 6.4 4.3 7.2 4.6 7.4 4.4 7.3 4.6 7.5
Hugdal Bru 14.0 11.0 6.3 5.5 17.0 15.0 9.1 8.6 18.0 16.0 9.5 9.1
Etna 7.6 13.0 6.4 11.0 10.0 16.0 8.3 13.0 10.0 16.0 8.4 13.0
Table D.7
Catchment area, median flood, record length, and fraction of rain for the 12 selected catchments used in this study.

Station name Catchment area
(km2)

Median flood
(m3/s)

Record length
(years)

FGP
(fraction of rain)

Dyrdalsvatn 3.31 7.52 32 0.93
Gravå 6.31 2.27 43 0.69
Grosettjern 6.6 1.54 53 0.32
Elgtjern 6.63 1.76 28 0.69
Gryta 7.03 1.99 54 0.59
Røykenes 50.09 65.84 39 0.95
Manndalen Bru 200.48 61.22 42 0.35
Øyungen 239.07 165.08 42 0.76
Sjodalsvatn 479.97 118.31 36 0.44
Viksvatn 508.13 174.01 118 0.76
Hugdal Bru 546.17 172.84 40 0.44
Etna 570.17 104.33 102 0.35
15
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Fig. E.12. In-sample return level plots for stations Dyrdalsvatn, Gravå, and Grosettjern.
Appendix E. In-sample return level plots

See Figs. E.12–E.15.
16
Appendix F. Out-of-sample return level plots

See Figs. F.16–F.19.
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Fig. E.13. In-sample return level plots for stations Elgtjern, Gryta, and Røykenes.



Journal of Hydrology 620 (2023) 129448

18

D.M. Barna et al.

Fig. E.14. In-sample return level plots for stations Manndalen Bru, Øyungen, and Sjodalsvatn.
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Fig. E.15. In-sample return level plots for stations Viskvatn, Hugdal Bru, and Etna.
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Fig. F.16. Out-of-sample return level plots for stations Dyrdalsvatn, Gravå, and Grosettjern.
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Fig. F.17. Out-of-sample return level plots for stations Elgtjern, Gryta, and Røykenes.



Journal of Hydrology 620 (2023) 129448

22

D.M. Barna et al.

Fig. F.18. Out-of-sample return level plots for stations Manndalen Bru, Øyungen, and Sjodalsvatn.
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Fig. F.19. Out-of-sample return level plots for stations Viksvatn, Hugdal Bru, and Etna.
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