
Neural Networks 169 (2024) 417–430

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Discriminative multimodal learning via conditional priors in generative
models
Rogelio A. Mancisidor a,∗, Michael Kampffmeyer b,c, Kjersti Aas c, Robert Jenssen b,c

a Department of Data Science and Analytics, BI Norwegian Business School, Nydalsveien 37, 0484 Oslo, Norway
b Department of Physics and Technology, Faculty of Science and Technology, UiT The Arctic University of Norway, Hansine Hansens veg
18, 9037 Tromsø, Norway
c Norwegian Computing Center, P.O. Box 114 Blindern Oslo, Norway

A R T I C L E I N F O

Keywords:
Multimodal learning
Generative models
Representation learning
Variational autoencoder

A B S T R A C T

Deep generative models with latent variables have been used lately to learn joint representations and generative
processes from multi-modal data, which depict an object from different viewpoints. These two learning
mechanisms can, however, conflict with each other and representations can fail to embed information on the
data modalities. This research studies the realistic scenario in which all modalities and class labels are available
for model training, e.g. images or handwriting, but where some modalities and labels required for downstream
tasks are missing, e.g. text or annotations. We show, in this scenario, that the variational lower bound limits
mutual information between joint representations and missing modalities. We, to counteract these problems,
introduce a novel conditional multi-modal discriminative model that uses an informative prior distribution and
optimizes a likelihood-free objective function that maximizes mutual information between joint representations
and missing modalities. Extensive experimentation demonstrates the benefits of our proposed model, empirical
results show that our model achieves state-of-the-art results in representative problems such as downstream
classification, acoustic inversion, and image and annotation generation.
1. Introduction

Measurement modalities 𝒙1,𝒙2,… ,𝒙𝑚 depict different viewpoints of
an object (Fig. 1) and are used in multi-modal learning to learn 𝒛, a
joint representation which captures information from all modalities and
that can be used for clustering, active and transfer learning, or, where
class labels 𝑦 are available, downstream classification. According to Shi
et al. (2019) multi-modal learning models should satisfy four criteria:
latent factorization, coherent joint and cross generation, and synergy.

Deep neural networks (DNNs) and deep generative models (DGMs)
with latent representations have been used in multi-modal learning
(Andrew et al., 2013; Du et al., 2018, 2019; Shi et al., 2019; Sutter
et al., 2020, 2021; Suzuki et al., 2016; Wang et al., 2015a, 2017;
Wu & Goodman, 2018). DGMs learn joint latent representations using
variational approximations of the posterior distribution, and learn gen-
erative models for data modalities by optimizing a variational lower
bound on the log-likelihood of the data. These two mechanisms can,
however, conflict with each other. Generative models may focus on
generating modalities without using the joint latent representation.
Therefore, the posterior distribution for the joint representation fails to
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embed information on the modalities, collapsing into a non-informative
prior distribution. This is called posterior collapse (Dieng et al., 2019;
Lucas et al., 2019), and harms the performance of downstream tasks
based on joint representations, e.g. classification or modality genera-
tion. Posterior collapse has been studied in uni-modal frameworks, but
less so in multi-modal domains.

There are different applications in which the data come from dif-
ferent sources referred to here as modalities, e.g., tuples of images
and annotations or acoustic and articulatory measurements. However,
not all observations necessarily come in tuples, because annotating
images or measuring articulatory movements can e.g. be costly (Sutter
et al., 2020, 2021) and take time to be generated. Hence, we are
interested in modeling conditional distributions that are able to learn
multi-modal latent representations, which can then be used to generate
data from missing modalities. Learning such latent representations is
important because we can capture relationships between modalities
that are valuable for generative and discriminative downstream tasks.
Towards this goal, we introduce a conditional multi-modal discrim-
inative (CMMD) model that works in the aforementioned scenarios,
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Fig. 1. A graphical scheme of multi-modal learning in which the data modalities depict
different viewpoints of an object and a latent representation embeds information from
all modalities.

where all modalities and class labels are available for model training,
but where some modalities and class labels required for downstream
tasks are missing. Missing modalities, in the context of this research,
refer to modalities that are costly to obtain for downstream tasks or
modalities that we are interested in generating conditional on all other
modalities, i.e. cross-modal generation or retrieval generation (Guo
et al., 2019), and therefore refer to them as missing. We show, in this
scenario, that the variational lower bound limits mutual information
(MI) between multi-modal representations and missing modalities. To
counteract this limitation, we introduce a novel likelihood-free objec-
tive function that optimizes MI and also introduce a prior distribution
for joint representations that is conditioned on the available modalities.

We show, through extensive experimentation, that by optimizing
the MI between multi-modal representations and missing modalities,
the latent representation learned by our proposed model does not show
posterior collapse. We also show that its joint representations embed
information from multiple data modalities, which is useful for down-
stream tasks. We have benchmarked different multi-modal learning
models across different representative domains, e.g. image-to-image,
acoustic-to-articulatory, image-to-annotation, and text-to-image. The
empirical results from this show that CMMD achieves state-of-the-art
results in downstream classification and in the generation of missing
modalities at test time.

Our main contributions are:

• A new objective function that counteracts the restriction on MI
between joint representations and the missing modalities

• A generative process that generates data from missing modalities
at test time using a conditional prior1

• Insights into the effect of posterior collapse in downstream clas-
sification and in the generative process in multi-modal learning.

2. Multimodal learning

We use a common notation. Data modalities are represented by
𝒙 and distinguished by a subscript. Joint latent representations are

1 Conditional priors in variational autoencoders were introduced in Sohn
et al. (2015). However, the focus was on the reconstruction of output data
based on (always available) input data. On the other hand, our model uses
conditional priors to generate latent representations in scenarios with missing
data modalities. Hence, the prior distribution is modulated by the available
modalities at test time and generates more informative representations than
isotropic Gaussian priors.
418
denoted by 𝒛. In the following we provide an overview of the relevant
multi-modal learning models to this work. See Guo et al. (2019) for a
comprehensive review.

Deep neural networks. Deep canonical correlation analysis (Andrew
et al., 2013) couples deep neural networks with canonical correlation
analysis (Hotelling, 1936) to train neural networks 𝑓 (⋅) and 𝑔(⋅) such
that they can maximize the correlation 𝜌(𝑓 (𝒙1), 𝑔(𝒙2)) between views
(modalities) 𝒙1 and 𝒙2. DCCA (Deep Canonical Correlation Analysis)
not only handles non-linearities, but also captures high-level data ab-
stractions in each of the multiple hidden layers. Its objective function
is, however, a function of the entire data set and therefore does not
scale to large data sets. To overcome this limitation, Wang et al.
(2015a) developed the deep canonically correlated autoencoder (DC-
CAE), which is optimized using stochastic gradient descent. DCCAE
also introduced reconstruction neural networks for the data modalities,
which minimized their reconstruction error. This is in addition to max-
imizing the canonical correlation between the learned representations.
Both DCCA and DCCAE use fully-connected neural networks to learn
representations and, in the case of DCCAE, to reconstruct the data
modalities using a bottleneck autoencoder-like architecture. These two
models employ stochastic gradient descent as a means of optimization.

Variational inference. A problem with DCCAE is that the canonical
correlation term in its objective function dominates the optimization
procedure (Wang et al., 2015a). The reconstruction of the modalities
is therefore poor. Wang et al. (2017) therefore developed a variational
CCA (VCCA) model to overcome this problem. VCCA uses variational
inference and deep generative models to generate latent representations
of input modalities. As VCCA is a probabilistic model, the authors
use fully-connected neural networks to parameterized the mean and
variance parameters in the probability functions defining the inference
and generative model in VCCA, and use stochastic gradient descent to
maximize the evidence lower bound of the model.

Du et al. (2019) proposed DMDGM, a supervised extension of VCCA
that combines multi-modal learning and classification in a unified
framework. The classification in DMDGM uses available views and
not joint representations. DMDGM is, however, not the only model
that addresses classification in a unified objective function. Du et al.
(2018) developed a semi-supervised deep generative model for miss-
ing modalities, the latent variable being shared across modalities.
They also modeled the inference process as a Gaussian mixture model
(GMM). Modeling the inference process as a GMM, however, harms the
tightness of the lower bound, as the entropy of a GMM is intractable.

The model presented by Vedantam et al. (2017) focuses on cross-
modality generation, using the product of experts (PoE) in the factor-
ization of posterior inference distributions. Wu and Goodman (2018)
similarly introduced MVAE, which assumes that the posterior distri-
bution is proportional to the product of individual conditional poste-
riors 𝑝(𝒛|𝒙1)⋯ 𝑝(𝒛|𝒙𝑛) normalized by the prior distribution 𝑝(𝒛). The
joint posterior distribution is therefore also a PoE. Shi et al. (2019),
through applying a similar approach, used a mixture of experts (MoE)
to develop MMVAE, the generative process of the model allowing con-
ditioning modalities and generation modalities to be interchangeable.
MoE and PoE provide elegant ways of cross-generation. The linear
combination of marginal distributions, however, learn joint represen-
tations that might not be useful for downstream classification (see
Section 4.2). Sutter et al. (2021) show that the MVAE models the joint
posterior distribution as a geometric mean, while MMVAE models it as
an arithmetic mean. Further, they generalize these two approaches in a
Mixture-of-Products-of-Experts (MoPoE) VAE, which approximates the
joint posterior of all subsets of modalities. MVAE, MMVAE and MoPoE
use text as a data modality, which requires encoder and decoder ar-
chitectures based on convolutional (MMVAE and MoPoE) or recurrent
(MVAE) neural networks.

It is noteworthy that MVAE, MMVAE, and MoPoE approximate
the joint posterior distribution, conditioned on all modalities, as a
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function of unimodal posterior distributions. Such a modeling approach
can deal with any combination of missing modalities simultaneously
and, therefore, cross-modal generation can be done in any direction
efficiently. However, none of these models are discriminative by nature
and, as a consequence, can only deal with discriminative tasks in a
two-steps fashion. CMMD is also able to model any combination of
missing modalities, but one at a time. On the other hand, generative
and discriminative models are trained end-to-end in the CMMD model.

The most recent multi-modal learning research has focused on
different ways of learning flexible joint representations that are useful
in cross-modality generation. For example, Theodoridis et al. (2020)
describe the learning of joint representation by introducing a cross-
modal alignment of the latent spaces by minimizing Wasserstein dis-
tances; Nedelkoski et al. (2020) couple normalizing flows and MVAE
to learn more expressive representations; Liu et al. (2021) propose a
variational information bottleneck lower bound to force the encoder
to discard irrelevant information, keeping only relevant information to
generate one modality. Chen and Zhu (2022) use generative adversarial
networks to simultaneously align the different encoder distributions
with the joint decoder distribution. None of these new methods, how-
ever, have been developed for downstream classification with missing
modalities. Javaloy et al. (2022) focus on learning encoders and
decoders that are impartial to the unimodal posterior distributions that
generate latent representations. To achieve such impartial optimization
(IO), the authors propose a novel optimization technique that modifies
the gradients of each modality and, as a result, does not neglect the
optimization of any specific modality.

Abrol et al. (2020) introduced a uni-modal method that uses, as in
our proposed model, conditional priors to generate a discrete mixture
of representations in the prior space. These are considered to be local
latent variables. Continuous variables in the posterior distribution are
considered to be global. Local and global variables are, for supervised
data, aligned using maximum mean discrepancy (Gretton et al., 2007),
which optimizes the mutual information of global latent variables and
input data. However, our proposed CMMD model focuses, instead, on
multi-modal data and uses conditional priors to generate representa-
tions when some modalities are missing. Further, its objective function
arises from the restriction imposed by the Kullback–Leibler divergence
in the evidence lower bound on mutual information.

3. Methods

3.1. Evidence lower bound

We have access to labeled multi-modal data (𝒙,𝒙, 𝑦) during
raining. 𝒙 = (𝒙1,… ,𝒙𝑛) are n modalities that are always available
nd 𝒙 = (𝒙𝑛+1,… ,𝒙𝑛+𝑚) are m modalities that are missing at test
ime.2 Only 𝒙 is therefore available for downstream tasks, the label

and 𝒙 both missing. Our proposed model at test time generates
atent representations, using a prior distribution 𝑝(𝒛|𝒙) conditioned
n the observed modalities. Latent representations 𝒛 ∼ 𝑝(𝒛|𝒙) are
urthermore used in both the generative process 𝑝(𝒙|𝒙, 𝒛) and in
he classifier model 𝑝(𝑦|𝒛). This encourages the model to learn useful
epresentations for classification, and to generate data from missing
odalities at test time.

The joint distribution in our proposed model is, in this scenario,
iven by 𝑝(𝒙, 𝑦, 𝒛|𝒙) = 𝑝(𝒙|𝒙, 𝒛)𝑝(𝑦|𝒛)𝑝(𝒛|𝒙), where 𝑝(𝒛|𝒙) is

a prior distribution conditioned on the always available modalities,
𝑝(𝒙|𝒙, 𝒛) is the generative process for the missing modalities at test
time, and 𝑝(𝑦|𝒛) is the density function for class labels. Note that the
posterior distribution 𝑝(𝒛|𝒙,𝒙, 𝑦), the joint latent representation that

2 Hence, subscripts in 𝒙 and 𝒙 indicate whether modalities are observed
r missing at test time. Missing modalities refer to modalities that are costly
o obtain or modalities generated using cross-modal generation.
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we want to learn, requires a marginal distribution that is not available
in closed form. We therefore approximate the true posterior distribution
𝑝(𝒛|𝒙,𝒙, 𝑦) using the parametric model, or encoder distribution,
(𝒛|𝒙,𝒙, 𝑦).

The evidence lower bound (ELBO) (𝒙,𝒙, 𝑦) of our proposed
odel is therefore

og 𝑝(𝒙, 𝑦|𝒙) ≥E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)

[

log
𝑝(𝒙, 𝑦, 𝒛|𝒙)
𝑞(𝒛|𝒙,𝒙, 𝑦)

]

≡(𝒙,𝒙, 𝑦), (1)

he inequality being a result of the concavity of log and Jensen’s
nequality. See Appendix A for details.

.2. Maximizing mutual information

We can, in principle, optimize Eq. (1) using the stochastic vari-
tional gradient Bayes (SVGB) algorithm (Kingma & Welling, 2013).
q. (1) does, however, include an average Kullback–Leibler divergence
hat is an upper bound on the conditional mutual information between
and 𝒙 (see Appendix B), i.e.

𝑝(𝒙 ,𝒙 ,𝑦)[𝐾𝐿[𝑞(𝒛|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)] ≥ 𝐼(𝒙, 𝒛|𝒙). (2)

onditional mutual information and posterior collapse: We there-
ore introduced a conditional mutual information term (1−𝜔)𝐼(𝒙, 𝒛|𝒙
n Eq. (1) to counteract the upper bound imposed by the Kullback–
eibler divergence, 𝜔 ∈ [0, 1] weighting the optimization on the mutual
nformation term. Note that the consequence of the upper bound
n Eq. (2) may result in latent representations that do not encode
nformation about 𝒙, which is equivalent to generating 𝒙 based
n the prior 𝑝(𝒛|𝒙). This problem is called posterior collapse in the
ni-modal literature (Dieng et al., 2019; Lucas et al., 2019), and it
ccurs when the variational posterior distribution matches the prior.
t should be noted that the main motivation to optimize the mutual
nformation term is to bypass the constraint imposed by the Kullback–
eibler divergence and, as a consequence of this choice, the latent
epresentation learned by our proposed model does not show posterior
ollapse as shown in Section 4.2 and Fig. 6.

Therefore, the following likelihood-free objective function for a
ingle data point is therefore obtained3

(𝒙,𝒙, 𝑦) = E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)
[ log 𝑝(𝒙|𝒙, 𝒛) + log 𝑝(𝑦|𝒛) + log 𝑝(𝒛|𝒙)

− log 𝑞(𝒛|𝒙,𝒙, 𝑦)] + (1 − 𝜔)𝐼(𝒙, 𝒛)
= E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)

[log 𝑝(𝒙|𝒙, 𝒛) + log 𝑝(𝑦|𝒛)]

−𝜔𝐾𝐿[𝑞(𝒛|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)]

−(1 − 𝜔)𝐾𝐿[𝑞(𝒛|𝒙)||𝑝(𝒛|𝒙)], (3)

here the last divergence term is called the marginal KL divergence
Hoffman & Johnson, 2016). The full derivation for Eq. (3) is given in
ppendix A.

The first KL divergence term in Eq. (3) has an analytical solution.
he second KL divergence is intractable due to the marginal distri-
ution 𝑞(𝒛|𝒙). It can, however, be replaced by any strict divergence
erm (Zhao et al., 2017), e.g. maximum mean discrepancy divergence
MMD) (Gretton et al., 2007). We select the squared population MMD
ince it encourages the average posterior distribution to match the
hole prior, which is

MD[ , 𝑝, 𝑞] = E𝑝(𝑥,𝑥′)[𝑘(𝑥, 𝑥′)] − 2E𝑝(𝑥),𝑞(𝑧)[𝑘(𝑥, 𝑧)] + E𝑞(𝑧,𝑧′)[𝑘(𝑧, 𝑧′)]. (4)

ere  is a unit ball in a universal reproducing kernel Hilbert space ,
and 𝑞 are Borel probability measures, and 𝑘(⋅, ⋅) is a universal kernel.

3 We write the objective function for a single data point to improve
eadability. The outer expectation in the objective function for the average
onditional log-likelihood is approximated with the empirical data distribution.
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We use a Gaussian kernel in our proposed model. Finally, the objective
function for a single data point therefore becomes

 (𝒙,𝒙, 𝑦) = E𝑞(𝒛|𝒙 ,𝒙)[log 𝑝(𝒙|𝒙, 𝒛) + 𝛼 log 𝑝(𝑦|𝒛)]

− 𝜔𝐾𝐿[𝑞(𝒛|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)]

− (1 − 𝜔)𝜆MMD[𝑞(𝒛|𝒙), 𝑝(𝒛|𝒙)], (5)

where 𝜆 counteracts the loss imbalance between the 𝒙 and  spaces
and 𝛼 controls the importance of the classification loss in the objective
function.

Effect of 𝝎 on the objective function: The first (term-by-term) KL
divergence in Eq. (5) regularizes each posterior distribution towards
its prior and is minimized when 𝑞𝑖(𝒛|𝒙𝑖,𝒙

𝑖
, 𝑦𝑖) = 𝑝𝑖(𝒛|𝒙𝑖) for all

. The marginal MMD divergence, on the other hand, regularizes an
verage posterior distribution 𝑞(𝒛|𝒙) = 1∕𝑁

∑

𝑖 𝑞(𝒛|𝒙,𝒙𝑖, 𝑦𝑖) towards
he prior distribution, without sacrificing model power (Hoffman &
ohnson, 2016). Makhzani et al. (2015) show that the term-by-term
L divergence simply encourages the average posterior distribution

o match the modes of the prior 𝑝(𝒛|𝒙). However, the MMD term
n Eq. (5) encourages the average posterior distribution to match
he whole prior, giving an effect similar to the adversarial training
roposed by Makhzani et al. (2015). Furthermore, setting the marginal
MD divergence to 0 may lead to representations from the prior that

re useless for sculpting latent representations (Hoffman & Johnson,
016). Setting the term-by-term KL divergence to 0 also implies that the
oint posterior representation is independent of the modality 𝒙. Our
roposed objective function therefore offers an elegant way of trading-
ff these effects through the 𝜔 parameter, recovering the variational
ower bound for 𝜔 = 1 and, for 1 > 𝜔 ≥ 0, optimizing mutual
nformation. The optimal 𝜔 value, as can be seen in Sections 4.3.1,
.3.5 and 4.4, is specific to the learning task and, therefore, must be
ound by cross-validation.

CMMD finally assumes the following density functions for the prior
istribution, the classifier, and the encoder

𝑝(𝒛|𝒙) ∼  (𝝁 = 𝑓𝜽(𝒙),𝝈2 = 𝑓𝜽(𝒙)),

𝑝(𝑦|𝒛) ∼ Cat(𝜋𝑦|𝒛 = 𝑓𝜽(𝒛)),

(𝒛|𝒙,𝒙, 𝑦) ∼  (𝝁 = 𝑓𝝓(𝒙,𝒙, 𝑦),𝝈2 = 𝑓𝝓(𝒙,𝒙, 𝑦)).

The decoder network is parametrized as

𝑝(𝒙|𝒙, 𝒛) ∼  (𝝁 = 𝑓𝜽(𝒙, 𝒛),𝝈2 = 𝑓𝜽(𝒙, 𝒛)),

or

(𝒙|𝒙, 𝒛) ∼ Bernoulli(𝒑 = 𝑓𝜽(𝒙, 𝒛)), (6)

where  and Cat denote the Gaussian and multinomial distributions
respectively, and where 𝑓 (⋅) is a multilayer perceptron (MLP) net-
work (Rumelhart et al., 1985). This means that the density parameters
𝝁, 𝝈2, 𝑝, and 𝜋𝑦|𝒛 are parametrized by neural networks, learnable
parameters being denoted by 𝜽 and 𝝓. Note that the classifier can han-
dle binary, multi-class, and multi-label classification using a sigmoid,
softmax, or multiple sigmoid activation function respectively at the
output layer.

We observed that 𝒛 ∼ 𝑞(𝒛|𝒙,𝒙, 𝑦) leads to an unstable classifica-
tion of 𝑦. We therefore fed the classifier 𝑝(𝑦|𝒛) with 𝒛 ∼ 𝑝(𝒛|𝒙) during
raining and test time. We hypothesize that the prior distribution repro-
uces the test scenario more accurately than the posterior distribution.
ig. 2 shows the forward propagation during training and test time in
ur proposed methodology4.

4 Full code of the model is available at https://github.com/
ogelioamancisidor/cmmd.
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4. Experiments and results

The experiments in this section assess the impact of our proposed
model, which optimizes mutual information, on the four criteria that
a multi-modal generative model should satisfy, i.e., latent factorization
(Sections 4.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4), coherent joint (Section 4.3.2)
and cross generation (Sections 4.2, 4.3.2, 4.3.3, 4.3.4), and synergy
(Sections 4.2, 4.3.1, 4.3.3, 4.3.4). To that end, we compare the CMMD
model we propose with different multi-modal learning algorithms in
downstream classification and generative tasks across different do-
mains: image-to-image using a multi-modal version of MNIST and
SVHN, image-to-text using a text describing digits pairs of MNIST-
SVHN images, acoustic-to-articulatory with the XRMB data set, and
image-to-annotation using the MIR Flickr data set. The benchmark
models are: CCA (Hotelling, 1936), DCCA (Andrew et al., 2013), DC-
CAE (Wang et al., 2015a), MVCL (Hermann & Blunsom, 2013), RBM-
MDL (Ngiam et al., 2011), VCCA (Wang et al., 2017), MVAE (Wu
& Goodman, 2018), MMVAE (Shi et al., 2019), and MoPoE (Sutter
et al., 2021). In addition, we include a classifier model M − 𝒙 that
only uses the always available modality, to allow the impact of joint
representations for classification to be assessed. Finally, Section 4.2 also
provides an analysis of the impact of mutual information optimization
in the CMMD model on posterior collapse.

Network architectures and model training details are given in Ap-
pendix C. However, given the importance of the 𝜔 hyperparameter
in the optimization of our proposed model, we mention here the
value found by cross-validation in each experiment, unless otherwise
specified. See Fig. C.1 for an overview over all 𝜔 values.

4.1. Data sets

In the following we explain the multi-modal data sets used in this
research.

2-modality MNIST: This data set, introduced by Wang et al. (2015a),
consists of 28 × 28 MNIST hand-written digit images (Deng, 2012).
The images have been randomly rotated at angles in the interval
[−𝜋∕4, 𝜋∕4], to generate 𝒙. The modality 𝒙 is generated by ran-
domly selecting a digit from 𝒙 and adding noise uniformly sampled
from [0, 1] to each pixel in the non-rotated image. Each pixel is then
truncated to the interval [0, 1].

MNIST-SVHN: We randomly paired each instance of a MNIST digit (𝒙)
with one instance of the same digit class in the SVHN data set (Netzer
et al., 2011) (𝒙), which is composed of street-view house numbers,
just as in Shi et al. (2019).

3-modality MNIST: This data set combines some of the modalities in
the previous data sets, i.e. original MNIST, rotated MNIST, and SVHN
digits. All of the same digit class.

MNIST-SVHN-Text: This data set was first introduced in Sutter et al.
(2020) and it is based on the MNIST-SVHN data set. The additional
string modality contains 8 characters where everything is a blank space
except the digit word. Further, the starting position of the word is
chosen randomly. The 8 character string is, finally, converted to a 71D
one-hot-encoding, which corresponds to the length of possible char-
acters in the dictionary used in Sutter et al. (2020). The experiments
using this data set consider all possible combinations of missing and
observable modalities, see Section 4.3.2.

XRMB: The original XRMB data set (Westbury, 1994) contains si-
multaneously recorded speech and articulatory measurements from
47 American English speakers. The modality 𝒙, the acoustic data,
is composed of a 13D vector of mel-frequency cepstral coefficients
(MFCCs). We also included their first and second derivatives. This 39D
vector is concatenated over a 7-frame window around each frame,
resulting in a 273D vector that corresponds to 𝒙. The modality 𝒙, the

articulatory data, is formed by horizontal and vertical displacements of

https://github.com/rogelioamancisidor/cmmd
https://github.com/rogelioamancisidor/cmmd
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Fig. 2. Forward propagation in our proposed CMMD model. The orange arrow indicates a forward pass during training, which is replaced by the blue arrow at test time, i.e. the
nput to 𝑝(𝒙|𝒙 , 𝒛) is 𝒛 ∼ 𝑞(𝒛|𝒙 ,𝒙 , 𝑦) during training, while 𝒛 ∼ 𝑝(𝒛|𝒙) at test time. The black arrow depicts a common forward propagation during training and testing, i.e. the
nput to 𝑝(𝑦|𝒛) is always 𝒛 ∼ 𝑝(𝒛|𝒙).
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pellets on the tongue, lips, and jaw, resulting in a 112D vector. The
ata set then finally contains 40 phone classes.

lickr: The Flickr data set (Huiskes & Lew, 2008) contains 1 million
mages, 25 000 being labeled according to 24 classes. Note that each
mage can be assigned to multiple classes. Stricter labeling was also
arried out for 14 of the classes, images only being annotated with a
ategory where that category was salient. The data set therefore has 38
lasses. We used the same 3857D feature vector (𝒙) as used by Srivas-
ava and Salakhutdinov (2012) to describe the images. The modality
 is composed of tags related to the image, the tags constrained to a
ocabulary of the 2000 most frequent words.

.2. Posterior collapse in multimodal learning

This section evaluates the impact of posterior collapse in VCCA,
VAE, MMVAE and our proposed CMMD model. We therefore mea-

ured posterior collapse as the proportion of latent dimensions that are
ithin 𝜖 KL divergence of the prior for at least 99% of the data sample,
s introduced by Lucas et al. (2019).

We trained all models using a 4-fold cross-validation approach, each
old containing 2 speakers from the XRMB data set (Westbury, 1994).
able 1 shows that CMMD, optimized with 𝜔 = 0.8, outperforms all
ther methods in terms of error rates and root mean square errors
rmse) for the generated missing modality. VCCA5 surprisingly ranks
umber two in the classification task, despite having a simpler archi-
ecture than MVAE and MMVAE. MVAE has lower error rates than
MVAE, even when we train MMVAE using an importance weighted

pproach and 𝑘 = 10 samples. MMVAE IWAE generates the missing
odality more accurately than MMVAE ELBO, and achieves smaller

rror rates.
The first two diagrams on the left side of Fig. 3 show the posterior

ollapse between 𝒛|𝒙 and 𝒛, and between 𝒛|𝒙 and 𝒛. They show,
or both versions of MMVAE, that around 80% of the dimensions in
he latent representations collapse to  (𝟎, 𝟏). This implies that the

5 In this experiment we learn the variance parameters for the decoder
etworks in VCCA for fair comparisons. The authors of the original paper that
ntroduced VCCA, used fixed variance parameters. The results are given in
able 2.
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Table 1
Error rates (%) and rmse (lower is best) for the experiment using 4 randomly chosen
folds (speakers IDs [(1, 3), (43, 45), (10, 13), (27, 29)]) from the XRMB data set, where the
shared latent representation is generated using the available modality at test time.
Note that VCCA cannot generate missing modalities in the scenario considered in this
experiment. We add a baseline classifier M−𝒙 that only uses 𝒙.

Fold M−𝒙 VCCA MVAE MMVAE ELBO MMVAE IWAE CMMD

1 39.9 40.2 45.5 54.9 48.9 32.4
– – 1.07 1.29 0.77 0.74

2 36.5 40.6 44.2 49.4 47.0 31.2
– – 1.06 1.28 0.79 0.75

3 54.9 55.4 56.8 61.9 60.2 47.4
– – 1.09 1.17 0.83 0.77

4 48.0 47.2 51.7 59.1 53.7 38.2
– – 1.07 1.23 0.82 0.80

Avg. 44.8 45.8 49.6 56.3 52.5 37.3
– – 1.07 1.24 0.80 0.76

latent representation is independent of the observed modalities. MVAE,
however, needs more than 5 nats when conditioned on the modality
𝒙, and more than 6 nats when conditioned on view 𝒙 before 80%
of the latent dimensions collapse. None of the latent dimensions in
VCCA and CMMD are within 6 nats, and their latent representations
therefore embed more information on the observed modalities. This
information on the modalities is useful for downstream classification
and, for CMMD, for the generation of the missing modality. The third
diagram finally shows posterior collapse between the representations
generated using 𝒛|𝒙 and 𝒛|𝒙. We want, in this case, 𝒛|𝒙 to collapse
into 𝒛|𝒙, this meaning that the model is able to learn joint repre-
sentations that contain information on 𝒙. Note that, in MMVAE, the
ollapse between both marginal distributions is strong given that both
ollapsed to  (𝟎, 𝟏). On the other hand, the marginal distributions in
VAE embed information on the modalities (see first two diagrams).
VAE, however, fails to learn joint representation as suggested by

he third diagram. CMMD does, however, counteract posterior collapse
hrough the conditional prior and through directly optimizing mutual
nformation, as shown by the first three diagrams.

We adapted the posterior collapse definition to the analysis of the
ariance parameters in the generative process, to allow us to under-
tand the rmse results for the generated missing modality. This insight
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Fig. 3. Posterior collapse (from left to right: 𝐾𝐿[(𝒛|𝒙)||𝒛], 𝐾𝐿[(𝒛|𝒙)||𝒛], and 𝐾𝐿[(𝒛|𝒙)||(𝒛|𝒙)]) in VCCA, MVAE, MMVAE, and CMMD. The far right diagram shows the
doption of the concept of posterior collapse to measure the variance parameters in the decoder generating 𝒙. For example, at 𝜖 = 0.06 around 79% of the dimensions in 𝒙̂2,
enerated by CMMD, have lower values than 𝜖.
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Table 2
We report error rates (lower is best) for experiments with MNIST and XRMB (average
over speakers in the test dataset). For the Flickr data set, we report the mean average
precision (mAP; higher is best). Results are based on Wang et al. (2017), except for
values marked with † (which are from our own tests without pre-trained weights with
Boltzmann machines) and results for CMMD.

Model name Pretrain MNIST error
(%)

XRMB error
(%)

Flickr mAP
(%)

M-𝒙 ✗ 13.1 37.6 48.0

DCCA ✓ 2.9 – –
DCCAE ✓ 2.2 – –

CCA ✗ 19.1 29.4 52.9
DCCA ✗ 4.7† 25.4 57.3
DCCAE ✗ 4.4† 25.4 57.3
MVCL ✗ 2.7 24.6 56.5
RBM-MDL ✗ 11.7 29.4 47.7
VCCA ✗ 3.0 28.0 60.5
VCCA-private ✗ 2.4 25.2 61.5
MVAE ✗ 6.0 39.8 65.0
MMVAE IWAE ✗ 12.3 37.4 50.0
CMMD ✗ 2.4 21.1 64.1

is shown in the last diagram of Fig. 3. For example at 𝜖 = 0.06, around
79% of the dimensions in 𝒙̂2 generated by CMMD, have lower values
than 𝜖. Furthermore, only 45% of the parameters learned by MMVAE
ELBO have lower values than 𝜖. We therefore hypothesize that MMVAE
ELBO and MVAE overestimate the variance parameters in the decoder,
resulting in higher rmse. The significant improvement for MMVAE
IWAE seems to only change the decoder to a high capacity decoder
and does not really improve the learned representations. Note that
the variance collapse for VCCA is included for reference. It is actually
generated using the modality 𝒙, which in theory is missing.

A mixture of experts and product of experts provide an elegant
cross-generation in multi-modal learning, the joint posterior distribu-
tion being a linear combination of marginal parameters or distributions.
Our approach to learning the posterior distribution is, however, to use
a single encoder network, which can capture interactions between all
modalities. The model we propose handles missing modalities using a
conditional prior modulated by the available modalities. VCCA presents
an interesting alternative to learning joint representations, the genera-
tive process embedding information on modalities into 𝒛. VCCA cannot,
however, generate missing modalities, which its generative model re-
quires. Note that only CMMD has lower error rates than the baseline
model M−𝒙, which indicates that current variational multi-modal
models are not suitable for learning useful joint representations for
downstream classification. CMMD should therefore be preferred over
VCCA, MVAE and MMVAE given that, in the setting of this research,
CMMD outperforms concurrent models in downstream classification
and in the generation of missing modalities at test time.

4.3. Classification and generating the missing modality

4.3.1. Image-to-image with MNIST
Table 2 shows that the performance of our proposed CMMD model

is on a par with state-of-the-art models, including those that use pre-
trained weights. We observed (practically) the same model perfor-
mance for this data set at different 𝜔 values, our best model using a
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value of 0.4. Note that both DCCA and DCCAE use pre-trained weights
with Boltzmann machines (BMs) (Salakhutdinov & Hinton, 2009). We
therefore, for completeness, also retrained DCCA and DCCAE without
using pre-trained weights. 2D t-SNEs of the latent space can be found
in Appendix F.

We used (in a second analysis) the original version of MNIST as
𝒙 and the SVHN data set as 𝒙. Our best model used 𝜔 = 0.1 and
achieved a higher accuracy than MVAE and MMVAE, as shown in
Table 3.

To show that CMMD can handle more than one missing and ob-
served modality, we construct a 3-modality data set matching the class
labels in: MNIST (𝒙1), rotated MNIST (𝒙2), and SVHN (𝒙3). We used
he same model parameters as were used in the previous experiment,
nd considered two test scenarios: (i) rotated MNIST and SVHN are
oth missing, i.e. 𝒙 = 𝒙1 and 𝒙 = (𝒙2,𝒙3) and (ii) SVHN is missing,
.e. 𝒙 = (𝒙1,𝒙2) and 𝒙 = 𝒙3. The top (bottom) row in Table 4 shows
he classification performance for the test scenario, in which two (one)
odalities are missing. Generated modalities are shown in Appendix G.

.3.2. Image-to-text with MNIST and SVHN
Note that given 𝑀 = 3 modalities, there are 2𝑀−1 = 7 combinations

f observable modalities 𝒙.6 We generate multimodal representations,
onditioned on all of the possible combinations of observed modali-
ies, with the CMMD model. After training, we randomly choose 500
epresentations from the training data set to train a multiclass logistic
egression to classify true digits. Table 5 compares the classification
erformance of the CMMD model (see Fig. C.1 and Table H.2 to
now the 𝜔 values used in these experiments), under this two-step
lassification approach, with that of MVAE, MMVAE, and MoPoE in
imilar experiments to those in Sutter et al. (2021) and Javaloy et al.
2022). We report model accuracy averaged over all 7 combinations
f observable modalities and 5 different runs. Models ending with IO
re trained with the impartial optimization approach introduced and
eported in Javaloy et al. (2022).

We can see that IO increases the classification accuracy of all
hree models, especially for MMVAE. However, CMMD achieves higher
iscriminative power in all scenarios of observable modalities. Fur-
hermore, Fig. 4 shows some examples of the images generated by
MMD. The left panel shows generated images for MNIST and SVHN
odalities conditioned on the Text modality, while the right panel

hows generated images for the SVHN modality conditioned on both
ext and MNIST modalities. Note that the SVHN images in the right
anel are sharper, compared to the left panel, since the generative
odel is conditioned on more observed modalities in that case. Details

n model architectures and hyperparameter values are in Appendix H.
Finally, using the same models as before, we evaluate the qual-

ty of the generated missing modalities conditioned on all different
ombinations of observable modalities, i.e. conditional or cross-modal
eneration. To that end, we use the generative coherence metric, first
ntroduced in Shi et al. (2019). Following previous works and same ar-
hitectures as in Sutter et al. (2021), we train a classifier on the original

6 These combinations are {M},{S},{T},{M, S},{M, T},{S, T}, and {M, S, T},
here M, S, and T refer to the MSNIT, SVHN, and Text modalities, respectively.
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Fig. 4. The left panel shows generated images for the MNIST and SVHN modalities conditioned on the observed Text modality using the CMMD model. The right panel shows
generated images for the SVHN modality conditioned on Text and MNIST modalities, which are assumed to be observed at test time.
Table 3
Accuracy results for downstream classification with
MNIST-SVHN. Results for MVAE and MMVAE are
based on Shi et al. (2019).
Model name MNIST-SVHN accuracy (%)

MVAE 95.7
MMVAE 91.3
CMMD 97.6 ± 0.08%

Table 4
Accuracy results for 3-modality MNIST. The first
experiment classifies using representations generated
with 𝒙 = 𝒙1, while the second experiment uses 𝒙 =
(𝒙1 ,𝒙2).
Missing modality Accuracy (%)

𝒙 = (𝒙2 ,𝒙3) 97.5 ± 0.25%
𝒙 = 𝒙3 98.9 ± 0.13%

Table 5
Accuracy performance (%), averaged over all 7 combinations of observable modalities
and 5 different runs with the MNIST-SVHN-Text data set, of the MVAE, MMVAE,
MoPoE, and CMMD models. Additionally, we include the results from Javaloy et al.
(2022) where MVAE, MMVAE, and MoPoE are trained with impartial optimization.

Model Javaloy et al. (2022) Sutter et al. (2021) Ours

MVAE 69.7 83.1 –
MVAE-IO 70.0 – –
MMVAE 87.6 89.0 –
MMVAE-IO 90.8 – –
MoPoE 89.9 95.1 –
MoPoE-IO 91.5 – –
CMMD – – 96.5

unimodal training data set to classify the generated modalities. If the
classifier detects the same attributes in the generated samples, it is a
coherent generation. Further, we use classification accuracy to measure
the quality of generated samples. Table 6 shows accuracy values of the
conditionally generated modalities averaged over 5 different runs. The
letter at the top indicates the modality being generated based on the
different sets of modalities below, where M, S, and 𝑇 stands for MNIST,
SVHN, and Text modalities. CMMD achieves higher accuracy in most
of the conditional generation scenarios.

4.3.3. Acoustic-to-articulatory with XRMB
The experimental setup and the data pre-processing used in this

section are based on (Wang et al., 2017). Table 2 shows average
error rates for all test speakers, CMMD outperforming previous models
without a domain-specific classifier. For this experiment, CMMD is
optimized with 𝜔 = 0.7. Note that Wang et al. (2017) used the
tandem speech recognizer (Hermansky et al., 2000) as classifier model
in all the experiments they conducted. The tandem speech recognizer
successfully couples neural networks and Gaussian mixtures models for
word recognition and, in the benchmark results of Hermansky et al.
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(2000), reduced speech classification error rates by 35%. Wang et al.
(2017) also used the 39D vector of MFCCs and the joint data represen-
tations as input data for the tandem recognizer for all experiments. We
hypothesize that this further improves the performance of the tandem
recognizer. The CMMD model we propose, however, only uses the
shared data representations for classification.7

4.3.4. Image-to-annotation with Flickr
We use the same data set in this section as that used in Srivastava

and Salakhutdinov (2012). Most of the Flickr data corresponds to
unlabeled images. We therefore used a two-stage training approach.
Firstly, we trained our proposed model, but without the classifier and
omitting the class label in the encoder, i.e. 𝑞(𝒛|𝒙,𝒙). Secondly, we
used the weights from the first stage in the corresponding networks of
Eq. (5) and used random weights at initialization for 𝑦 in the encoder
𝑞(𝒛|𝒙,𝒙, 𝑦).

Following the standards set by previous research, we use the mean
average precision (mAP) to measure the classification performance of
our proposed CMMD model for 10 000 randomly selected images. Ta-
ble 2 shows that CMMD, optimized with 𝜔 = 0.5, and MVAE outperform
previously proposed image classification methods.

4.3.5. Acoustic inversion and annotation generation
We tested the generative process 𝑝(𝒙|𝒙, 𝒛) in CMMD in image-to-

annotation mapping and also acoustic-to-articulatory (called acoustic
inversion (AI)). The scarce availability of articulatory data (Badino
et al., 2017) makes acoustic inversion an important field. Table 8
shows, on the test data set, that CMMD outperforms the rmse for
AI reported in Wang et al. (2015b), which is based on the training
and validation data set (1.17 and 1.96, respectively). Our results also
outperform the average rmse of 2.14 obtained on the test dataset
of Badino et al. (2017).

The second experiment involves generating tags, which can be
costly to obtain, that describe a given picture in the Flickr data set. We
used our trained model from the previous section and compared it with
the deep Boltzmann machine (DBM) model (Srivastava & Salakhutdi-
nov, 2012), MVAE, and MMVAE. We furthermore tested all models on
different images and with different levels of complexity. Table 7 shows
some of the generated tags. More examples are given in Appendix D.

The generative process in CMMD generates quality articulatory and
annotation samples at test time. The results suggest that the prior
distribution in our proposed model learns joint representations through
the optimization of our proposed objective function, which maximizes
mutual information between representations and the missing modality
at test time.

7 In the current version of the data set, it is not possible to identify the 39D
vector of MFCCs in the 273D vector for the modality 𝒙. We could therefore
not concatenate MFCCs and joint representations for training the classifier.
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Table 6
Accuracy values of the conditionally generated modalities averaged over 5 different runs. The letter at the top indicates the modality being
generated based on the different sets of modalities below, where M, S, and T stands for MNIST, SVHN, and Text modalities, respectively.
Model M S T

S T S, T M T M, T M S M, S

MVAE 0.24 0.20 0.32 0.43 0.30 0.75 0.28 0.17 0.29
MVAE-IO 0.11 0.26 0.28 0.50 0.33 0.30 0.61 0.12 0.64
MMVAE 0.75 0.99 0.87 0.31 0.30 0.30 0.96 0.76 0.84
MMVAE-IO 0.49 0.79 0.64 0.87 0.76 0.82 0.97 0.58 0.77
MoPoE 0.74 0.99 0.94 0.36 0.34 0.37 0.96 0.76 0.93
MoPoE-IO 0.11 0.63 0.52 0.28 0.47 0.43 0.80 0.11 0.90
CMMD 0.75 1.00 1.00 0.66 0.87 0.87 0.98 0.69 0.98
Table 7
Tags describing images are generated with the multi-modal learning deep Boltzmann machine (DBM) (Srivastava & Salakhutdinov, 2012) and
with CMMD. DBM fails to generate coherent tags in the first 3 images. CMMD is, however, able to generate meaningful tags. In the last image,
both models generate coherent tags.

Generated tags water, glass, wine, portrait, women, nikon, d200, foliage, autumn,
DBM drink, beer, soldier, postcard tamron, d300, trees, leaves,

bubbles, splash, soldiers, army f28, sb600, d60 fall, forest,
drops, drop nikkor, d50, d90 woods, path

Generated tags – statue car, performance a700
MVAE

Generated tags canon, night, 2007 nikon, green, lion flower trees, autumn
MMVAE IWAE

Generated tags sign, fisheye animal, lion, apple, food nature, light
CMMD outdoors, zoo, k10d, autumn, leaves

challengeyouwinner, wood, path,
boston, wildlife forest
Table 8
We report rmse for AI and error rates (%) for downstream classification in a speaker-independent experiment for eight speakers.
Average and standard deviation (std) values are shown at the bottom.
XRMB

Speaker AI Classification Speaker AI Classification
ID rmse error (%) ID rmse error (%)

7 0.80 15.8 23 0.79 26.8
16 0.76 21.4 28 0.57 22.5
20 0.73 16.2 31 0.77 20.6
21 0.78 25.8 35 0.78 20.2

average 8 speakers 0.75 21.2 std 8 speakers 0.07 3.7
4.4. Analysis of the objective function

In this section, we train the CMMD model using the XRBM data
set for all speakers in Table 8 using a speaker-dependent approach,
i.e. 70%–30% of the data for each speaker used for training-testing,
unless otherwise specified. We furthermore trained the CMMD model
in two ways: (i) we fine-tuned 𝜔 in the range [0, 0.1,… , 1] and (ii) we
used 𝜔 = 0.7 (which is the optimal value in the previous section) and
fixed the variance parameters in the decoder network 𝑝(𝒙|𝒙, 𝒛) to
the same value as in Wang et al. (2017), i.e. 𝜎2 = 0.01.

Impact of fixed variance parameters:. The second diagram in Fig. 5
shows some between-variability in the modality 𝒙. Fixing the vari-
ance parameters in 𝑝(𝒙|𝒙, 𝒛) therefore deteriorates error rates, as
shown in the first diagram.

Should we optimize the ELBO?. The third panel in Fig. 5 compares error
rates for the ELBO (dashed line), recovered for 𝜔 = 1, and for our
proposed objective function (Eq. (5)) with fine-tuned 𝜔. Our proposed
objective function achieves lower error rates for all speakers. The rmse
for the generated features in 𝒙 are also smaller when we optimize our
proposed objective function.

The top panel of Fig. 6 shows the posterior collapse in the CMMD
model for 𝜔 = 0 and 𝜔 = 1; the latter optimizes the ELBO, while
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the former optimizes mutual information (in addition to the generative
and classifier models). Recall that the main motivation to include the
mutual information term 𝐼(𝒙, 𝒛|𝒙) is to counteract the posterior
collapse problem and, from the figure, it is clear that CMMD avoids
the posterior collapse problem by optimizing mutual information. How-
ever, as shown by the four panels in the middle and bottom of Fig. 6 (in
which we add the relatively more complex learning task presented in
Section 4.2, but varying 𝜔) optimizing only mutual information harms
the performance of the generative and classifier models, reflected in
the rmse and error rate respectively. Note that only optimizing mu-
tual information accounts for the minimization of an average MMD
divergence measure. That is, we only minimize the divergence from
the average conditional posterior 𝑞(𝒛|𝒙) to the conditional prior. Our
results confirm that minimizing an average divergence measure makes
the prior distribution, which is used for downstream tasks, unable to
sculpt latent representations as suggested by Hoffman and Johnson
(2016). On the other hand, only optimizing the term-by-term KL di-
vergence leads to latent representations 𝒛 that are independent from
𝒙, which turns out to be relatively less harmful for downstream tasks.
Fortunately, our proposed objective function offers a way of trading-off
these two effects and, as can be seen in the middle and bottom rows in
Fig. 6, there is an 𝜔 region in which the generative and classifier models
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Fig. 5. The 1st and 3rd plot show error rates for the speaker-dependent experiments (Section 4.4). The 2nd plot shows average variances of all generated 𝒙 features. The last
plot compares rmse for their generated values. Speaker 28 was removed as the rmse in both cases is roughly 0.
𝑝
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Fig. 6. The top panel shows the posterior collapse in the CMMD model for 𝜔 = 0 and
𝜔 = 1. In both cases, we use data for speaker 7 in the XRMB data set. The two panels
in the middle show average rmse and error rate as a function of 𝜔 for speakers 7, 16,
20, 21, 23, 28, 31, and 35 in the XRMB data set. Finally, the two panels in the bottom
show average rmse and error rate values in the cross-validation approach introduced
in Section 4.2.

achieve higher performance. Hence, the optimal 𝜔 value is specific to
the learning task and must be found by cross-validation.

How much overhead does mutual information optimization add? We use
the MNIST-SVHN-Text data set to measure training time for 𝜔 = 0 and
𝜔 = 1. The average training time for processing one batch with 256
observations is 10.59 ms if the ELBO is optimized. On the other hand,
the average training time to optimize our proposed objective function,
including mutual information, is 11.04 ms, which is the same training
time for 1 > 𝜔 > 0. Therefore, our proposed objective function does not
add significant overhead and is able to achieve higher performance in
the downstream tasks considered in this research.

5. Conclusion

This research shows that the variational lower bound on the con-
ditional likelihood has a Kullback–Leibler divergence that limits the
amount of information on the modalities embedded in the joint repre-
sentation. We, to counteract this effect, propose a novel likelihood-free
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objective function that optimizes the mutual information between joint
representations and the modalities that we are interested in gener-
ating at test time. Our proposed CMMD model furthermore uses an
informative prior distribution that is conditioned on the modalities
that are always available. We analyze the negative effects of posterior
collapse in downstream classification and in the generative process of
multi-modal learning models.

The empirical results show that the objective function we propose
achieves higher downstream classification performance and lower rmse
in the generated modalities than the regular variational lower bound.
The model we propose also successfully counteracts the posterior col-
lapse problem by optimizing mutual information and by using an
informative prior. Finally, the higher performance of our proposed
CMMD model with respect to the state-of-the-art is consistent across
different representative multi-modal problems.
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Appendix A. Objective function

The joint distribution in the CMMD model is 𝑝(𝒙, 𝑦, 𝒛|𝒙) =
(𝒙|𝒙, 𝒛)𝑝(𝑦|𝒛)𝑝(𝒛|𝒙) and, under this model specification, the poste-
ior distribution 𝑝(𝒛|𝒙,𝒙, 𝑦) is intractable. Therefore, CMMD uses VI
nd approximates the true posterior distribution with a variational den-
ity 𝑞(𝒛|𝒙,𝒙, 𝑦). Hence, the variational lower bound on the marginal
og-likelihood of a single observation is

log 𝑝(𝒙, 𝑦|𝒙) = log∫ 𝑝(𝒙, 𝑦, 𝒛|𝒙)𝑑𝒛

= log∫ 𝑞(𝒛|𝒙,𝒙, 𝑦)
𝑝(𝒙, 𝑦, 𝒛|𝒙)
𝑞(𝒛|𝒙,𝒙, 𝑦)

𝑑𝒛

= logE𝑞(𝒛|𝒙 ,𝒙 ,𝑦)
𝑝(𝒙, 𝑦, 𝒛|𝒙)
𝑞(𝒛|𝒙,𝒙, 𝑦)

≥E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)

[

log
𝑝(𝒙, 𝑦, 𝒛|𝒙)
𝑞(𝒛|𝒙,𝒙, 𝑦)

]

= E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)[ log 𝑝(𝒙|𝒙, 𝒛) + log 𝑝(𝑦|𝒛) + log 𝑝(𝒛|𝒙)

− log 𝑞(𝒛|𝒙,𝒙, 𝑦)], (A.1)

here the inequality is a result of the concavity of log and Jensen’s
nequality.

Now we can write the conditional mutual information term 𝐼𝑒(𝒙,
|𝒙) (which depends on the functional form of the encoder as denoted
y the subscript), as follows

𝑒(𝒙, 𝒛|𝒙) = E𝑝(𝒙 ,𝒙 ,𝒛)

[

log
𝑝𝑒(𝒙, 𝒛|𝒙)

]

𝑝𝑒(𝒙|𝒙)𝑝𝑒(𝒛|𝒙)
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= E𝑝(𝒙 ,𝒙 ,𝒛)

[

log
𝑝𝑒(𝑧|𝒙,𝒙)𝑝𝑒(𝒙|𝒙)
𝑝𝑒(𝒙|𝒙)𝑝𝑒(𝒛|𝒙)

]

= E𝑝(𝒙 ,𝒙 ,𝒛)[log 𝑝𝑒(𝑧|𝒙,𝒙) − log 𝑝𝑒(𝒛|𝒙) + log 𝑝(𝒛|𝒙)

− log 𝑝(𝒛|𝒙)]
= E𝑝(𝒙 ,𝒙)

[

𝐾𝐿[𝑝𝑒(𝑧|𝒙,𝒙)||𝑝(𝒛|𝒙)]
]

− E𝑝(𝒙)
[

𝐾𝐿[𝑝𝑒(𝒛|𝒙)||𝑝(𝒛|𝒙)]
]

, (A.2)

where 𝑝(𝒙,𝒙, 𝒛) = 𝑝(𝒙)𝑝(𝒙|𝒙)𝑝(𝒛|𝒙), 𝑝(𝒙, 𝒛|𝒙) = 𝑝(𝒛|𝒙,𝒙)
𝑝(𝒙|𝒙), ∫ 𝑝(𝒛|𝒙,𝒙)𝑝(𝒙)𝑑𝒙 ≈ 1∕𝑁

∑

𝑛 𝑝𝑒(𝒛|𝒙,𝒙𝑛) = 𝑝𝑒(𝒛|𝒙),
and all probability density functions are approximated by variational
approximations (the encoder and prior distribution in our proposed
model). The expectations E𝑝(𝒙 ,𝒙) and E𝑝(𝒙) are finally estimated
using the empirical data distribution 𝑝̃𝐷.

Adding the conditional mutual information term (1−𝜔)𝐼𝑒(𝒙, 𝒛|𝒙)
to the lower bound in Eq. (A.1) (mutual information optimization
being controlled by 𝜔 ∈ [0, 1]) and replacing 𝑝𝑒 with the encoder
𝑞(𝒛|𝒙,𝒙, 𝑦)8 gives the likelihood-free objective function for a single
data point

(𝒙,𝒙, 𝑦) + (1 − 𝜔)𝐼𝑒(𝒙, 𝒛|𝒙)
= E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)[log 𝑝(𝒙|𝒙, 𝒛) + log 𝑝(𝑦|𝒛) + log 𝑝(𝒛|𝒙)

− log 𝑞(𝒛|𝒙,𝒙, 𝑦)]

+(1 − 𝜔)𝐾𝐿[𝑞(𝑧|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)] − (1 − 𝜔)𝐾𝐿[𝑞(𝒛|𝒙)||𝑝(𝒛|𝒙)]
= E𝑞(𝒛|𝒙 ,𝒙 ,𝑦)[log 𝑝(𝒙|𝒙, 𝒛) + log 𝑝(𝑦|𝒛)]

− 𝜔𝐾𝐿[𝑞(𝒛|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)]
−(1 − 𝜔)𝐾𝐿[𝑞(𝒛|𝒙)||𝑝(𝒛|𝒙)]

≡  (𝒙,𝒙, 𝑦). (A.3)

Note that we can obtain unbiased samples from 𝑞(𝒛|𝒙) by first
randomly sampling tuples (𝒙, 𝑦) ∼ 𝑝̃𝐷 and then 𝒛 ∼ 𝑞(𝒛|𝒙,𝒙, 𝑦).
These are used to estimate the MMD divergence term in Eq. (5).

Appendix B. Upperbound on mutual information

Using the last line in Eq. (A.2) and replacing 𝑝𝑒 with the encoder
𝑞(𝒛|𝒙,𝒙, 𝑦), which acknowledges the access to a labeled data set, it
follows that

E𝑝(𝒙 ,𝒙 ,𝑦)[𝐾𝐿[𝑞(𝑧|𝒙,𝒙, 𝑦)||𝑝(𝒛|𝒙)]] ≥ 𝐼(𝒙, 𝒛|𝒙) (B.1)

given that the KL divergence is strictly positive. The expectation can be
estimated using the empirical data distribution 𝑝̃𝐷.

Appendix C. Model training and architectures

We minimized Eq. (5) using SVGB and automatic differentiation
routines in Theano (Team et al., 2016). Note that the reconstruction
term of Eq. (5) can be efficiently estimated using the reparameterization
trick (Kingma & Welling, 2013). The KL divergence term has a closed-
form expression (Kingma & Welling, 2013; Mancisidor et al., 2020), and
the MMD divergence is approximated numerically by drawing samples,
as explained in Section A. This is the method suggested by Zhao et al.
(2017) and Rezaabad and Vishwanath (2020).

CMMD architectures are, to provide a fair comparison in all ex-
periments, chosen to resemble previous works. We furthermore use
softplus activation functions in all hidden layers, using dropout (Sri-
vastava et al., 2014) with 0.2 probability. We use the same 𝛼 and
𝜆 parameter values for all CMMD models, which are set to 10 and
1000 respectively. We furthermore tune the hyperparameter 𝜔 over
the grid [0, 0.1, 0.2,… , 1]. Fig. C.1 shows the optimal value of 𝜔 for

8 In this case the encoder is a variational approximation that can take any
rbitrary form as long as it is a valid probability distribution (Sutter et al.,
021).
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Fig. C.1. Optimal 𝜔 value, found by cross-validation, for each of the experiments in
this research. Experiments are ordered chronologically.

each experiment in this research, which is found by cross-validation.
Finally, we use the Adam optimizer (Kingma & Ba, 2014) with a 10−4

earning rate in all experiments. Our model is implemented in Theano
nd trained on a GeForce GTX 1080 GPU.

mage-to-Image with MNIST: The encoder network uses 3 hidden
ayers of 2500 neurons. Both the prior distribution and the decoder use

layers of 1024 neurons. The latent variable is a 50D vector and the
lassifier uses 2 hidden layers of 50 neurons. We assume, given that
he second view is almost a continuous variable, that it is Gaussian
istributed.

mage-to-Image with MNIST-SVHN: The encoder, decoder and prior
istribution in this experiment have 1 hidden layer of 400 neurons. The
atent representation is a 20D vector and the classifier has 2 hidden
ayers of 50 neurons each.

-modality MNIST: We use the same encoder in this experiment as
n the ‘‘image-to-image with MNIST’’ experiment. The decoder archi-
ecture is shown in Table H.3 (Decoder columns), which is the same
rchitecture as in Shi et al. (2019). We add an extra layer, such as
he one at the bottom of Table H.3, but with 1 stride to generate two
issing modalities (𝒙2 and 𝒙3). Note that we, for the rotated MNIST

mages, pad the images to a 32 × 32 matrix during training, and crop-
ack to a 28 × 28 matrix at test time. The decoder loss is, finally, the
um of two cross entropy terms, one for each missing modality.

coustic-to-Articulatory with XRMB: We trained our model using
he same 35 speakers used by Wang et al. (2015a, 2017). The cur-
ent version of the test data set, however, only contains 8 speakers
ithout silence frames (silence frames were removed in the other 35

peakers). Our model is, for this reason, tested on 8 speakers in a
peaker-independent downstream classification task (Table 2).

We use an encoder with 3 hidden layers of 3000 neurons. The
rior distribution and decoder each have 3 hidden layers of 1500
eurons. The classifier model has 2 hidden layers of 100 neurons and
he latent shared representation is a 70D vector. We assume a Gaussian
istribution for modality 𝒙 in this case. The 𝜔 parameter has, for this
ata set, a significant impact on downstream classification and our best
odel uses 𝜔 = 0.7.

mage-to-Annotation with Flickr: We use an encoder with 4 hidden
ayers of 2048 neurons each. The prior distribution and decoder use 4
idden layers of 1024 neurons. We, given that the modality 𝒙 corre-
ponds to tags, use a Bernoulli decoder. The shared representation is a
024D vector and our best model uses 𝜔 = 0.5. We deal with multi-label
lassification in this data set. The classifier for this model therefore
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Table C.1
Tags generated using our proposed CMMD for some labeled images in the Flickr data set.

Generated tags reflection, beauty, stone, car chrome white, yellow,
themoulinrouge sculpture abstract, bus,

lines, graphic

Generated tags flower, holiday, flower, layers, food, vegan, d80 landscape,
vacation, red textures, iris, cupcake explore,

soe flickr

Generated tags abigfave, minimal, macro, tamron, flower, explore, bike, stripes
buenosaires, wall, nikond40, india flores red, tree, nyc,
impressedbeauty ny,

Generated tags nature, water horses, grey, macro, garden, shoes, explore, california
abigfave, landscape, friends closeup selfportrait,
reflection, mirror 365days, toronto
uses 2000 neurons with sigmoid activations in the output layer and 2
hidden layers of 1550 neurons. Note that we follow previous works and
exclude unlabeled images if they have less than 2 tags, given that we
are interested in finding joint representations for both data-modalities.
We finally standardize all features in the modality 𝒙.

Appendix D. Generating tags

Table C.1 shows tags generated using our proposed CMMD model
for some labeled images in the Flickr data set. Note that none of the
images have any tag in the original data set.

Appendix E. Additional details on posterior collapse

We use the posterior collapse definition introduced in Lucas et al.
(2019). This, in our experiments, is 𝑃𝑟(𝐾𝐿[𝑞(⋅)||𝑝(⋅)] < 𝜖) ≥ 1−𝛿, where
𝛿 = 0.01 and 𝜖 ∈ [0, 6]. We therefore measure the proportion of latent
dimensions i that are within 𝜖 KL divergence for at least 1−𝛿 of the data
points. The MMVAE, MVAE, and VCCA models are, in our experiments,
trained using the authors’ publicly available codes9.

Fig. 3 shows different measures of collapse for Fold 110 for Sec-
tion 4.2 experiments. The far left diagram shows posterior collapse
𝑃𝑟(𝐾𝐿[(𝑧𝑖|𝒙)||(𝑧𝑖)] < 𝜖) ≥ 1 − 𝛿), where (𝒛𝑖) ∼  (0, 1) and (𝑧𝑖|𝒙) are
drawn from the prior distribution, the joint MoE posterior, the joint PoE
posterior, and the shared inference distribution for CMMD, MMVAE,
MVAE, and VCCA respectively.

The second diagram in Fig. 3 calculates 𝑃𝑟(𝐾𝐿[(𝑧𝑖|𝒙)||(𝑧𝑖)] < 𝜖) ≥
1 − 𝛿). However, 𝑧𝑖 ∼ 𝑁(0, 1) and (𝑧𝑖|𝒙) are, for this, drawn from the
inference posterior distribution, the joint MoE posterior, the joint PoE
posterior, and the inference private distribution in CMMD, MMVAE,
MVAE, and VCCA respectively. Finally, the third diagram in Fig. 3
calculates 𝑃𝑟(𝐾𝐿[(𝑧𝑖|𝒙)||(𝑧𝑖|𝒙)] < 𝜖) ≥ 1 − 𝛿), where (𝑧𝑖|𝒙) and
(𝑧𝑖|𝒙) are drawn as explained above.

9 MMVAE: https://github.com/iffsid/mmvae,
MVAE: https://github.com/mhw32/multimodal-vae-public,
VCCA: https://ttic.uchicago.edu/~wwang5/.
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The other 3 folds show the same pattern.
Appendix F. Latent space - MNIST

Fig. F.1 shows 2D t-SNEs (Van der Maaten & Hinton, 2008) of the
latent space learned using CMMD, MVAE and VCCA. The t-SNEs for
both CMMD and VCCA show well separated class labels. Note that the
class label variability is larger for the CMMD embeddings than VCCA.
The t-SNEs for MVAE, however, show some overlapping class labels.

Appendix G. Generating multiple missing modalities

Fig. G.1 compares the missing modality/modalities generated at test
time by the decoders in CMMD, MMVAE, and MVAE. In panel (a) we
assume SVHN digits are missing at test time, in panel (b) both rotated-
MNIST and SVHN are missing modalities at test time. In panel (c) and
(d) we train MMVAE, optimizing the evidence lower bound (ELBO) and
its importance weighted autoencoder (IWAE) version respectively, and
generate the missing modality at test time (SVHN digits). For complete-
ness, panel (e) shows the SVHN digits generated using MVAE reported
in Shi et al. (2019). Both CMMD (panel (a)) and MMVAE-IWAE (panel
(d)) generate quality and coherent SVHN digits, matching the MNIST
digit in all cases. MVAE (panel (e)), however, generates low quality
SVHN digits and it is difficult to see whether the generated image
matches the MNIST digit. CMMD generates two missing modalities in
panel (b), which is clearly a more challenging task. Only digits 7 and
0 are generated correctly for both missing modalities. Finally, it is
interesting to compare the results obtained with MMVAE using two
objective functions. If MMVAE optimizes the evidence lower bound,
then the generated SVHN images have relatively low quality and do
not match the MNIST class.

Appendix H. Cross-modal generation with MNIST-SVHN-text

The network architectures used in the experiments using the MNIST-
SVHN-Text data set are shown in Tables H.3, H.4, and H.5, which
are the same architectures used in Shi et al. (2019), Sutter et al.
(2020, 2021) and Javaloy et al. (2022). The only difference is that
we use the encoder architecture in the aforementioned methods for the
prior distribution in the CMMD model. The encoder architecture in the

CMMD model is a fully-connected neural network with 3 hidden layers,

https://github.com/iffsid/mmvae
https://github.com/mhw32/multimodal-vae-public
https://ttic.uchicago.edu/~wwang5/
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Fig. F.1. 2D t-SNEs of the latent space in CMMD, MVAE and VCCA. The scatter color is assigned by the class label.
Fig. G.1. Generated images using CMMD (top row), MMVAE (middle row), and MVAE (bottom row). We, for all models, use the original MNIST digits to draw latent representations,
which are further used to generate SVHN digits. Note that the MVAE images are taken from Shi et al. (2019).
Table H.1
Accuracy performance, averaged over 5 different runs, for all subsets of observable modalities. We do not include results for the method introduced in
Javaloy et al. (2022) given that the authors only provided average values over the different set of observable modalities (see Table 5).
Model M S T M, S M, T S, T M, S, T

MVAE 0.90 ± 0.01 0.44 ± 0.01 0.85 ± 0.10 0.89 ± 0.01 0.97 ± 0.02 0.81 ± 0.09 0.96 ± 0.02
MMVAE 0.95 ± 0.01 0.79 ± 0.05 0.99 ± 0.01 0.87 ± 0.03 0.93 ± 0.03 0.84 ± 0.04 0.86 ± 0.03
MoPoE 0.95 ± 0.01 0.80 ± 0.03 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.03
CMMD 0.98 ± 4E-3 0.80 ± 4E-3 1.00 ± 0.00 0.99 ± 2E-3 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 2E-3
Table H.2
Accuracy values (generation coherence), averaged over 5 different runs, of the modalities conditionally generated by the
CMMD model, together with the optimal 𝜔 values found by cross-validation.

M S T

S T S, T M T M, T M S M, S

avg coherence 0.75 1.00 1.00 0.66 0.87 0.87 0.98 0.69 0.98
std coherence 0.02 0 0 0.07 0.07 0.10 2E-3 0.02 4E-3
𝜔 0.9 0 0.2 0.6 0 0.4 0.6 0.9 0.6
each with 2500 units. All layers in the encoder use softplus activation
functions and a dropout layer with 0.2 probability. Following previous
work, the multimodal representation is a 20D latent variable, and we
use the same values for 𝛼 and 𝜆 as in the other experiments, which are
10 and 1000 respectively. It is noteworthy that the 3 modalities are
vectorized and concatenated before sending them through the encoder.

To make a fair comparison with previous methods, we implemented
a two-step classification using the multinomial logistic regression model
implemented by scikit-learn with default values. The logistic regression
428
model is trained using 500 latent variables, which are generated and
randomly selected from the train data set. Finally, we test the predictive
power of the trained logistic regression on the entire test data set. Ta-
ble H.1 shows the average accuracy over 5 different runs, for all subsets
of observed modalities. For the cross-modal generation experiments, we
train classifier models for each of the original unimodal modalities. The
network architectures are the same as in the conditional prior column
of Table H.3, H.4, and H.5, which again are the same architectures used
in the aforementioned methods. Table H.2 shows the average coherence
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Table H.3
SVHN conditional prior and decoder layers. The last column for each model specifies the kernel size, stride, padding, and dilation. All layers
are 2D convolutional (conv) and upconvolutional (upconv) in the encoder and decoder, respectively, with ReLU activations. Finally, the number
of input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.
Conditional prior Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 3 32 (4, 2, 1, 1) 1 linear 20 128
2 conv 32 64 (4, 2, 1, 1) 2 upconv 128 64 (4, 2, 0, 1)
3 conv 64 64 (4, 2, 1, 1) 3 upconv 64 64 (4, 2, 1, 1)
4 conv 64 128 (4, 2, 0, 1) 4 upconv 64 32 (4, 2, 1, 1)
5a linear 128 20 5 upconv 32 3 (4, 2, 1, 1)
5b linear 128 20
Table H.4
MNIST conditional prior and decoder layers. All layers are linear with ReLU activations. Finally, the number of input and
output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.
Conditional prior Decoder

Layer Type #F.In #F.Out Layer Type #F.In #F.Out

1 linear 784 400 1 linear 20 400
2a linear 400 20 2 linear 400 784
2b linear 400 20
Table H.5
Text conditional prior and decoder layers. The last column for each model specifies the kernel size, stride, padding, and dilation. All layers are
1D convolutional (conv) and upconvolutional (upconv) in the encoder and decoder, respectively, with ReLU activations. Finally, the number of
input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.
Conditional prior Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 71 128 (1, 1, 0, 1) 1 linear 20 128
2 conv 128 128 (4, 2, 1, 1) 2 upconv 128 128 (4, 1, 0, 1)
3 conv 128 128 (4, 2, 0, 1) 3 upconv 128 128 (4, 2, 1, 1)
4a linear 128 20 4 conv 128 71 (1, 1, 0, 1)
4b linear 128 20
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and standard deviation over 5 different runs, together with the optimal
𝜔 value found by cross-validation in each experiment.
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