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Preface
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The root cause of this thesis is Ingrid, who sparked my interest in statistics
and almost five years ago introduced me to changepoint models. She has been
exceedingly supportive throughout and is always enthusiastic, positive and
solution-oriented. I am grateful to my co-supervisor Nils Lid Hjort’s keen eyes
for details and for letting me into his office to answer questions whenever needed.
Thanks to Idris and Paul for being open to collaboration, encouraging and
interested, as well as for the regular supervision on Skype. I also thank Kristoffer
Hellton and Morten Stakkeland for letting me play around with the ship sensor
data, Solveig Engebretsen for running my code countless times at any time of
the day, and the remaining co-authors Ola Haug and Magne Aldrin. It was great
fun working with Jonas Moss on the kdensity R package, implementing the 25
year old doctoral work of Ingrid (supervised by Nils). The past three years have
been vastly enriched—both socially and academically—by my fellow students
and colleagues in the statistics group at the Mathematics Department in Oslo,
Big Insight, and the Statscale room in Lancaster. For teaching me basic C++, I
owe Daniel Grose a skiing lesson. Finally, I am grateful to my friends for helping
me recharge my batteries over weekends, to Trude for enduring me during thesis
work and lock-down, and to my family for always supporting what I do.
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Blindern, January 2021
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Chapter 1

Introduction

Both in science and industry, the sizes of data sets are growing. But without
appropriate tools for turning the data into insight, the value of harvesting more
data is severely limited. This has created a surge in demand for statistical
methods capable of handling enormous data sets, both in the sense of offering
reasonable computing time as well as being methodologically sound. That is,
modern statistical methods should not only be consistent, powerful and accurate,
but also computationally scalable.

Apart from consisting of many measurements, big data sets can be extremely
diverse. In long, multivariate time series, the typical assumption of stationarity
frequently does not hold in practice. The problem of detecting if and when
some distributional properties of the data change over time has therefore found
increasing applied interest in recent years. For example, Eckley et al. (2020) use
change detection methodology to remotely detect the location of gas emission
sources utilising data obtained from sensors mounted on an airplane, Gao et al.
(2020) use it for monitoring the surface-temperature of organ transplants, and
Lévy-Leduc and Roueff (2009) search for anomalies in large amounts of network
traffic data. Other areas where detecting changes has become an integral part
include software reliability engineering (Mendiratta et al., 2019), research on
telecommunications networks (Bardwell et al., 2019) and econometrics (Hlávka
et al., 2017).

The motivating application for this thesis is detection of anomalies in
sensor-monitored machinery. In this setting, several sensors are placed on
different locations of a machine, for instance a pump or a motor, to measure the
temperature, pressure or other quantities of interest over time. The machine
is monitored to detect if it is not operating as supposed to, either to optimise
performance or to avoid costly or dangerous failures. This applied problem
translates well to a statistical change detection problem, as a significant change
in the sensor data relative to its normal behaviour often signals that something
is off with the machine. For example, if the hourly mean temperature of a motor
is higher than it normally is, this may indicate that something is wrong with the
cooling system. An idealised example of such temperature monitoring is shown
to the left in Figure 1.1. For illustrational purposes, there are only four sensors
in this example, but in practice, there may be several hundred sensors making
measurements every second. Monitoring the sensor readings by eye is therefore
not feasible. In addition, subtler changes can be detected when combining the
information across all the sensors in a principled way.

A feature of the sensor data encountered in the present thesis we particularly
focus on is cross-correlation—correlation between the sensors at any given time,
due to, e.g., the proximity of the sensors (Figure 1.1, right). Handling and
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1. Introduction

Figure 1.1: A multivariate times series of simulated temperature recordings from
four imagined sensors on a ship’s motor. Around time-point 400, a part of the
cooling system breaks down. As a result, the temperature recordings of sensor 1
and 2 increase to a consistently higher level; the mean temperature has changed.
The robustly estimated correlations between the sensors are shown in the matrix
to the right. As some sensors are imagined to be relatively close to each other,
the correlation between them is strong and positive. See Paper III and Paper IV
for a similar type of anomaly detection in real data.

understanding the impact of cross-correlation when combining information from
all sensors is important to obtain accurate and trustworthy results. Detecting
changes in the correlation structure itself may also be of interest. Moreover,
cross-correlation has received relatively little attention in the change detection
literature so far, despite its near ubiquitous presence in high-dimensional time
series.

There are two different modes of change detection resulting in different but
related statistical problems. In online change detection, data are collected and
analysed in real-time, and the aim is to control the rate of false alarms, but
detect true changes as quickly as possible. Offline change detection, on the
other hand, concerns the retrospective analysis of a historical data set, with
the aim of accurately estimating the number and locations of changes. In the
sensor-monitoring example, an online method would be used as the real-time
monitoring system of the motor, while an offline method could be used to analyse
and prepare a training data set for the online method.

We study both online and offline change and anomaly detection for cross-
correlated, multivariate time series. Our contributions lie in the intersection of
computation and methodology in the form of novel methods that are scalable to
scenarios with many sensors or other variables. We also apply change detection
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methods to new real world problems. Throughout, the focus is mainly on
frequentist methods and parametric models. However, alternatives outside this
scope will be touched upon along the way in this introduction.

The rest of the thesis is organised as follows: Chapters 2 and 3 provide
background material for putting the papers into context. Chapter 2 starts by
formally defining the change detection problem in the offline setting. General
computational and methodological frameworks are then introduced in the
univariate setting as a stepping stone to the more complex multivariate methods.
Next, the anomaly detection problem is presented as a special case of the change
detection problem. We finish the chapter by pointing to methods and problems
surrounding the scope of the thesis. Chapter 3 partly builds on Chapter 2 to
introduce the online version of change detection in a similar fashion. Summaries
of the four papers then follow in Chapter 4, emphasising their main contributions.
In Chapter 5, I discuss parts of my work in more detail and point to important
venues of future research. The four papers in full length conclude the thesis.

Before we continue, some general remarks on notation is due. For a compact
presentation, we write xs:e := {xs, . . . , xe}, where s < e. Bold types are
used to indicate that an object is a vector rather than a scalar, for example
xs:e := {xs, . . . ,xe}, where xt = (x(1)

t , . . . , x
(p)
t )ᵀ. We also let [n] := {1, . . . , n}

for n ∈ N.
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Chapter 2

Offline change and anomaly
detection
Offline change detection methods take as input a p-variate time series of fixed
length, xt for t = 1, . . . , n, and aim to answer one or a mix of the four problems:

(P1) Is the data stationary or does its distribution change over time?

(P2) If there are changes, how many changes are there?

(P3) Given a number of changes, at what times do they occur?

(P4) Given the times of change, how does the distribution change?

To be precise, consider the following general model for x1, . . . ,xn: Let the
changepoints 1 < τ1 < . . . < τK < n denote K < n unknown time-points where
the data-generating mechanism for xt changes abruptly. As a consequence,
the observations are divided into K + 1 stationary segments with different
distribution functions F0(x), . . . , FK(x). I.e., the data follow a piecewise
stationary distribution given by

xt ∼ Fk for t = τk + 1, . . . , τk+1 and k = 0, . . . ,K, (2.1)

where we define τ0 := 0 and τK+1 := n. In this model, (P1) is the testing problem
of whether K = 0 or K > 0, while (P2)-(P4) are the problems of estimating K,
τ1, . . . , τK and F0, . . . , FK , respectively, preferably combined with measures of
estimation uncertainty. Depending on the problem at hand, the ideal goal is to
construct the most powerful test or the most accurate estimator.

In most of this thesis, we will not consider models quite as general as (2.1).
Firstly, we will mostly work with real-valued vector observations that can be
described by a parametric family of densities f(x|θ), where f is constant, changes
occur in the parameter vector θ. Now the model in (2.1) becomes

xt ∼ f(x|θk) for t = τk + 1, . . . , τk+1 and k = 0, . . . ,K, (2.2)

where θk−1 6= θk for all k. Secondly, we primarily focus on models where the
xt’s are independent in time. Thirdly, as mentioned in the introduction, our
focus lies on frequentist methods. Some Bayesian alternatives are given at the
end of this chapter.

The prototypical setup is to let f be a normal density with mean θ, as
detecting changes in the mean is arguably the most important problem in
practice. Plenty of other setups exist, however, for example changes in variance
(Hsu, 1977; Inclán and Tiao, 1994), covariance matrix (Wang et al., 2018),
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2. Offline change and anomaly detection

parameters of vector autoregressive models (Wang et al., 2020b), Poisson rates
(Henderson and Matthews, 1993), parameters in exponential families (Worsley,
1986). Non-parametric methods for detecting general distributional changes as
in (2.1) also exist (Pettitt, 1979; Csörgő and Horváth, 1988).

This chapter gives a brief overview of important methodological developments
on the described offline change detection problem. There are a number of more
comprehensive reviews in the literature that can be consulted for more details,
for instance Truong et al. (2020), Aminikhanghahi and Cook (2017), Niu et al.
(2016), Jandhyala et al. (2013), Chen and Gupta (2011), as well as in the theses
of e.g. Tickle (2020), Maeng (2019) and Maidstone (2016). We begin by an
introduction to some general ideas and frameworks for change detection in the
univariate setting.

2.1 General ideas and frameworks—univariate data

Due to the literature on change detection being so vast, there are several ways
of categorising all the different change detection methods. Following the review
article of Truong et al. (2020) and the work of Killick et al. (2012), I have chosen
to structure the exposition based on viewing the offline change detection problem
as a problem of optimising a constrained or penalised cost. From this point of
view, an offline change detection method consists of three elements: A cost for
fitting observations to a specific model, C(xs:e) ≥ 0, a penalty or constraint
for the complexity of the model to avoid overfitting, P (τ1:K) ≥ 0, and a search
procedure for solving

min
τ1:K

[
K∑
k=0

C(x(τk+1):τk+1) + P (τ1:K)
]
. (2.3)

The minimising arguments of (2.3) are the changepoint estimates τ̂1:K̂ , where
K̂ is the estimated number of changepoints. In this section we think of the xt’s
as univariate observations to fix ideas, but the general framework (2.3) easily
carries over to the multivariate setting of Section 2.2.

Note that within this framework, (P1) is answered implicitly through the
estimates τ̂1:K̂ ; the null hypothesis of stationarity is accepted if K̂ = 0 and
rejected otherwise. (P2) and (P3) are solved directly, while (P4) is often
answered by construction of the cost function or by a post-processing step given
the estimated segmentation.

The cost function is a measure of how well the observations fit the model—the
lower the cost, the better the fit—and there is an abundance of costs with different
properties available. A prominent example from the changepoint literature is
the log-likelihood cost (e.g. Hinkley (1970), Gombay and Horvath (1994), Eckley
et al. (2011) and Aue and Horváth (2013)), defined by

C(xs:e) = −2 sup
θ

e∑
t=s

log f(xt|θ) (2.4)
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General ideas and frameworks—univariate data

for independent and identically distributed (i.i.d.) observations. Using the
log-likelihood cost results in a penalised maximum likelihood approach to change
detection. As in many other contexts, the maximum likelihood approach results
in estimators with desirable properties, such as consistency of the estimated
changepoints under the true model and certain regularity conditions (He and
Severini, 2010). The maximum likelihood approach to offline change detection
can be traced back to Hinkley (1970), who studied (P3) (estimating the location
of a change) in the case of a single change in the mean of Gaussian data with
known variance. Other examples of costs include quadratic loss (Chen and Gupta,
2011), absolute loss (Bai, 1995), outlier-robust costs (Huber, 2004; Hušková,
2013; Chakar et al., 2017; Fearnhead and Rigaill, 2019) and nonparametric costs
(Zou et al., 2014b). A selection of common costs can be found in Truong et al.
(2020).

The penalty function measures the complexity of a given changepoint model.
It is essential in obtaining an accurate estimate of the number of changes, K, as it
governs how much the cost must be reduced for it to be worth adding an additional
changepoint, thereby increasing the model complexity. Excluding a penalty in
the change detection problem with an unknown number of changes would result
in maximal overfitting as the optimum of (2.3) would be to add a changepoint
at every observation, i.e. τ̂1:K̂ = [n − 1]. The most common penalty function
is linear in the number of changepoints; P (τ1:K) = βK. This penalty includes
standard model selection tools like Akaike’s information criterion (Akaike, 1974)
when β = 2d and the Bayesian or Schwarz’ information criterion (Schwarz, 1978)
when β = d logn, where d is the number of additional parameters in the model
per changepoint added. An example of a non-linear penalty that is tailored to the
change in mean problem is the modified Bayesian information criterion (Zhang
and Siegmund, 2007), given by P (τ1:K) = 3K logn+

∑K
k=0 log

(
(τk+1 − τk)/n

)
.

This penalty favours models with evenly spaced changes. More examples of
penalties will emerge as we go along in this chapter.

When it comes to search methods, there are particularly two popular classes
of algorithms we will treat in more detail. The first approach is based on model
selection and solves (2.3) exactly by a dynamic programming scheme. The second
and oldest approach solves (2.3) approximately by recursively applying tests for
the existence of a single changepoint to narrower and narrower windows of the
data. After presenting these two classes of algorithms, we go on a quick tour of
notable alternatives.

Dynamic programming-based methods Multiple change detection methods
based on dynamic programming define recursions for finding the exact optimum
of (2.3). The optimal partitioning method of Jackson et al. (2005) is a cornerstone
among such algorithms. It can only be used for linear-in-K penalties, but in
return, it finds the optimum in O(n2) time, provided computation of the cost
does not depend on n. This is the case for most costs as long as independence
between observations in different segments is assumed. The key to optimal
partitioning is to define F (t) as the optimal penalised cost for data x1:t. It starts
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2. Offline change and anomaly detection

by F (0) = −β, and then proceeds by computing

F (t) = min
i<t

{
F (i) + C

(
x(i+1):t

)
+ β

}
. (2.5)

The optimal cost is given by F (n).
Although a reduction from exponential to quadratic in n computing time is

remarkable, it is still prohibitive for sufficiently large n. Motivated by this, the
pruned exact linear time (PELT) algorithm of Killick et al. (2012) refines optimal
partitioning by only considering relevant i’s in the minimisation in (2.5) at each
step t. This is made possible by the observation that adding a changepoint
always reduces the cost. Therefore, if at time t2 > t1, the inequality

F (t1) + C(x(t1+1):t2) + β ≥ F (t2) (2.6)

holds, then t1 can never be the most recent changepoint for all t3 > t2. In
other words, t1 can be “pruned” from the set of candidate changepoints after
time t2. The effect of pruning in practice is roughly to automatically discard
times before a true changepoint. Consequently, PELT can scale linearly in n
if the expected number of true changepoints also scales linearly with n, but
it remains quadratic like optimal partitioning in the worst-case scenario of no
changes. Parallelisation can further reduce the computational burden (Tickle
et al., 2020), though at the price of sacrificing exactness of the solution. Even
without parallelisation, the computational savings achieved by PELT is massive
for many practical problems, making it an increasingly popular method. We
also derive a PELT type algorithm in Paper IV.

If only changes in a single parameter is of interest, a very fast alternative
to the inequality type pruning in PELT is so-called functional pruning in the
functional pruning optimal partitioning algorithm of Maidstone et al. (2017).
This type of pruning results in a substantial increase in candidate changepoints
being pruned, irrespective of the true number of changes present. Functional
pruning optimal partitioning can also be used to fit models where parameters
are dependent across segments, as opposed to PELT.

As noted, optimal partitioning, PELT and functional pruning optimal
partitioning can only be used with a linear penalty. If a non-linear penalty
is preferred, the segment neighbourhood algorithm of Auger and Lawrence (1989)
is an alternative. Segment neighbourhood passes through the data recursively
as optimal partitioning, but also conditions on the number of changepoints in a
particular segment. That is, it starts by computing the optimal segmentation
for a single change, before recursively updating the optimal segmentation for
one added change until a user-input maximum number of changes K < n is
reached. Consequently, segment neighbourhood requires O(Kn2) operations to
find the optimum. If K is completely unknown, this means cubic scaling in n,
which limits its use to small data sets. As for optimal partitioning, the speed of
segment neighbourhood can be improved by pruning techniques (Rigaill, 2010;
Maidstone et al., 2017). Using a linear penalty with PELT or functional pruning
optimal partitioning, however, remains a vastly more computationally viable
option for large data sets.
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General ideas and frameworks—univariate data

Binary segmentation-based methods Another large class of multiple change
detection algorithms emerges from the following idea: Let T (τ, x1:n) be a test
statistic for a changepoint at τ in the series of observations x1:n. This could be
any of your favourite tests for a difference in distribution between the sample x1:τ
and x(τ+1):n—a t-test or likelihood ratio test for example. A natural test for the
presence of a single changepoint is then to compute T̂ (x1:n) = maxτ T (τ, x1:n)
and compare it with a threshold b. If T̂ (x1:n) is above b, a change is detected
and estimated to be located at the maximising changepoint, τ̂ . By splitting the
sample at τ̂ , the same procedure can be applied to each of the two segments
x1:τ̂ and x(τ̂+1):n to identify further changes, and so forth on each segment as
long as the test is significant. This is the binary segmentation algorithm and it
“is arguably the most established search method used within the changepoint
literature” (Killick et al., 2012). It is often attributed to Vostrikova (1981), Scott
and Knott (1974) and Edwards and Cavalli-Sforza (1965).

The way binary segmentation approximates the optimisation problem (2.3)
becomes more apparent by considering test statistics of the form

T (τ, x1:n) = C(x1:n)− C(x1:τ )− C(x(τ+1):n). (2.7)

For a log-likelihood cost, (2.7) is the likelihood ratio test. Maximising this test
over τ is the same as finding the single changepoint which provides the greatest
decrease in cost. The threshold b governs how much the cost must be reduced
when adding a changepoint for it to be considered a change, and can thus be
viewed as a linear penalty in the number of changepoints.

There are at least three advantages of using binary segmentation. Firstly,
it is computationally fast, only requiring O(n logn) operations. Secondly, it
is easy to implement and modular. Thirdly, it is conceptually simple as it
essentially reduces the multiple changepoint problem to a single changepoint
problem, which can be further reduced to a (multiple) testing problem. Binary
segmentation has also been shown to be consistent (Venkatraman, 1993) in
scenarios where adjacent changepoints are sufficiently far apart. In total, this
makes binary segmentation applicable to a wide range of old and new change
detection problems. All that is needed is a test statistic for discriminating
between distributional features of interest.

The main disadvantage of binary segmentation is so-called masking, which is
due to its particular approximative nature. A typical example is when changes
occur frequently and two close-by changes cancel each other out in the test for a
single change. Generally, masking refers to change scenarios where at least one
change is missed.

As a result, several tweaked versions of binary segmentation have recently
been proposed to make it robust to a larger range of changepoint configurations.
Circular binary segmentation of Olshen et al. (2004) is an early modification for
detecting changes that switch back and forth between two distributional regimes.
Later, the wild binary segmentation algorithm of Fryzlewicz (2014) has drawn
much attention as it provably provides error-rate-optimal changepoint estimates
(both (P2) and (P3)) in a certain sense (Wang et al., 2018, 2020a). Rather
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2. Offline change and anomaly detection

than deterministically splitting each segment at the optimal single changepoint,
wild binary segmentation draws intervals at random to search for a single
change. Achieving the mentioned optimal rates, however, may require a very
large amount of intervals, hence losing the computational advantage over the
exact search methods, like PELT. Recent further improvements include wild
binary segmentation 2 (Fryzlewicz, 2020), the narrowest-over-threshold method
(Baranowski et al., 2019) and seeded binary segmentation (Kovács et al., 2020).

It should be mentioned that the most popular test statistic to use within
binary segmentation is the cumulative sum (CUSUM) statistic. It can be traced
all the way back to the first articles on change detection by Page (1954, 1955),
who considered the online version of (P1) (testing for the presence of a change)
in the context of industrial quality control. Hinkley (1971) later considered (P3)
(estimating the location of a change) for Page’s CUSUM in the offline setting
with a single change.

In modern offline change detection literature (e.g. Wang and Samworth (2018);
Fryzlewicz (2014); Aue and Horváth (2013)), the CUSUM statistic mostly does
not refer to Page’s CUSUM, but to the statistic

T (τ, x1:n) =
√
τ(n− τ)

n

(
1

n− τ

n∑
t=τ+1

xt −
1
τ

τ∑
t=1

xt

)
. (2.8)

This statistic is equivalent to the positive root of the likelihood ratio statistic for
a single change at τ in the mean of Gaussian data with known variance, and it
serves as a blueprint for many other change detection tests. For example, Inclán
and Tiao (1994) derive a test for a change in the variance by using cumulative
sums of x2

t , and Lee et al. (2003) further extend this idea by switching xt in (2.8)
with an appropriate function g(xt) for detecting a general parameter of interest.
The simple form of CUSUM tests is what drives their popularity, as it facilitates
both quick computation and theoretical analysis. An important result is that a
large class of CUSUMs converge in distribution to a Brownian bridge (e.g. Lee
et al. (2003)), which is helpful for tuning the threshold b in certain scenarios.

Not all CUSUMs fit nicely into the story of costs, penalisation and search
methods. However, some CUSUMs are related to likelihood ratios (Inclán and
Tiao, 1994) and squared error loss. As such, they can be viewed as another
layer of approximation in (2.3) in addition to binary segmentation. Despite
being approximative in general, the theoretical results on the consistency and
optimality of wild or plain binary segmentation mentioned here use CUSUM
type test statistics (Venkatraman, 1993; Wang et al., 2018, 2020a).

Other search methods There is a growing number of search methods and
approaches apart from those we have seen so far based on dynamic programming
and binary segmentation. We now briefly present a selection of these alternatives.

Binary segmentation can be described as a “top-down” search method as it
starts with the entire stretch of data, before splitting it into smaller and smaller
pieces. A natural alternative is therefore a “bottom-up” search method, where
one initially starts with a changepoint at every observation, before merging
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General ideas and frameworks—univariate data

segments until some criterion is met. Such methods are still new to the change
detection field, only recently having been explored by Matteson and James (2014)
and Fryzlewicz (2018). These articles, however, suggest that such methods can
be competitive with binary segmentation type methods, especially in scenarios
with frequent changes.

Another alternative set of methods related to binary segmentation are moving
sum methods, proposed for change detection by Preuss et al. (2015) and Eichinger
and Kirch (2018), building on similar approaches to testing, e.g. Hušková and
Slabý (2001). Moving sum methods, like binary segmentation, are based on
testing for a single changepoint, but do so by sliding a window of a certain
bandwidth across the time series, testing for a change at the window’s midpoint.
Given an appropriate bandwidth, moving sum methods can also be shown to be
consistent for the number and location of changes, and are quick to compute as
well as conceptually simple. Their main drawback is that performance crucially
depends on a well-tuned bandwidth parameter.

Other model selection approaches also exist, where the simultaneous
multiscale changepoint estimator for detecting changes in the mean proposed
by Frick et al. (2014) has recieved much attention. Their take on the change
detection problem is to minimise the number of changepoints over all potential
piecewise constant mean signals within the acceptance region of a multiscale
test. They show that this corresponds to a certain penalised cost, facilitating
quick computation, and prove that the family-wise error rate of the number of
estimated changes is controlled. Moreover, confidence sets for the locations of
the changepoints as well as the piecewise constant mean can also be constructed.
Pein et al. (2017) extend the simultaneous multiscale changepoint estimator to
heterogeneous data, and Li et al. (2016) propose a related method for controlling
the false discovery rate rather than the family-wise error rate, as control of
family-wise error rate often leads to underestimating the number of changes.
Unfortunately, the framework underpinning these multiscale methods only works
for univariate data.

A model selection penalty that is linear in the number of changepoints is
connected to an L0-penalty on the sums of differences of a piecewise constant
mean. Harchaoui and Lévy-Leduc (2010) exploit the link between L0 and L1
penalisation to create a computationally efficient changepoint estimator, similar
to the famous LASSO regression estimator (Tibshirani, 1996). However, the L1-
penalty does not balance type I and type II error optimally for change detection
(Cho and Fryzlewicz, 2011).

The final class of change detection methods based on model selection we
mention is the data-driven penalty selection methods based on “slope heuristics”
of Birgé and Massart (2001, 2007), described in Baudry et al. (2012). These
methods aim to automatise tuning of penalties, which is often a delicate problem
in practice. Their detection performance is good, but they are restricted to small
data sets due to poor computational scaling in the sample size.
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2.2 Multivariate methods

Data recordings are increasingly often multivariate and high-dimensional rather
than univariate in the current “big data” era. This has led to a massive growth
in research on multivariate change detection methods over the past ten years.
Before reviewing a selection of the literature, we highlight some of the additional
challenges connected to multivariate changepoint analysis compared to the
univariate setting.

A naive way of detecting multivariate changes is to apply a univariate method
to each time series and put a changepoint at each time-point the ensemble of
univariate methods detects a change. However, such an approach would suffer
from many false positives due to multiple testing, it does not account for
dependence between the variables, and it is not be able to borrow strength
across signals to detect changes that are small in each variable, but large when
seen as a whole. Moreover, the ensemble of univariate methods might not scale
well computationally as the number of variables, p, grows. These are the main
reasons for taking what we can call a “fully” multivariate changepoint approach.

Now recall the problem formulation in this chapter’s introduction, the
changepoint models (2.1) and (2.2) in particular. The space of possible
distributions per segment, Fk, is now vastly more complex; imagine the possibility
of different marginal distributions per variable and different forms of dependence
between them. Even under a family of parametric models f(x|θ), the number
of choices for f and ways in which θ can change becomes exponentially larger
in p. A specific additional question in the multivariate setting that has been
addressed in the literature (e.g. Jirak (2015) and Fisch et al. (2019b)), and we
pursue in this thesis, is the following:

(P5) Given that there is a change, which of the p variables change?

In the case where θ(i)
k is the k’th segment mean for variable i, for example, the

aim is to estimate the subsets Jk ⊆ [p] of non-zero elements in θk − θk−1 for
k = 1, . . . ,K. Indicating which variables change is important to be able to
diagnose what the cause of a change may be.

Complicating things further, there is a big difference between trying to detect
changes that occur in more or less than c√p variables, for some non-zero constant
c (see e.g. Enikeeva and Harchaoui (2019), Cai et al. (2011) or Jeng et al. (2013)).
If more than or exactly c√p variables change, we are in a dense regime, and if
less than c√p variables change, we are in a sparse regime. The intuition behind
there being two regimes can be explained as follows: In the dense regime, many
variables change such that it is beneficial to aggregate information equally across
all variables in the search of a change. If this type of aggregation is used in the
sparse regime, on the other hand, the noise from the non-changing variables is
more likely to drown out the signal from the few changing variables, making the
detection problem harder. The boundary between the two regimes just happens
to be at c√p in the limit as p→∞ for changes in the mean of i.i.d. Gaussian
observations with known variance. The consequence is that different methods

12



Multivariate methods

are optimal for separating the null hypothesis of no change from sparse and
dense alternatives, respectively. In addition, it is primarily in the sparse regime
it is relevant to ask (P5). It is likely that a boundary between sparse and dense
changes also exists for other types of changes and data distributions, but the
the exact nature of such a general law is an open problem, to the best of my
knowledge.

Changes in the mean As in the univariate setting, changes in the mean vector
is the most well-studied problem. Early contributions all consider tests for a
single, dense change. As we have seen in Section 2.1, all such tests can be
embedded in a binary segmentation type algorithm to detect multiple changes.
Srivastava and Worsley (1986) study the likelihood ratio test for a single change in
the mean of multivariate Gaussian data when the correlation matrix is unknown
but constant. Horváth et al. (1999) later consider a scaled version of the same
statistic, but derives its limiting distribution under a more general model with
temporally m-dependent noise.

A large portion of modern work concentrates on the problem of testing for
a single change, but from a high-dimensional angle. This either means that
p→∞ in theoretical analysis of the method, or that interest lies on methods
that are computationally scalable to potentially very large p. Many such tests
are based on aggregating information across local test statistics per variable,
T (τ, x(1)

1:n), . . . , T (τ, x(p)
1:n), where T (·, ·) often is the CUSUM (2.8), but could in

principle be any test. Early high-dimensional work focused on models assuming
independence between variables i = 1, . . . , p—what we call cross-independence—
and assumed that the change is dense. For example, Bai (2010), Horváth and
Hušková (2012) and Zhang et al. (2010) all propose an L2-aggregation of their
local statistics under these assumptions. The two former allow for temporal
dependence and deal with estimation of a change whose presence is known a
priori, i.e., (P3) assuming that a change has occured somewhere. Zhang et al.
(2010) consider the testing problem (P2) and formulate a model where the change
is allowed to be sparse, but their test statistic does not deal with the potential
sparsity of the change, nor (P5).

Subsequently, the problem of detecting sparse changes in cross-independent
models received increasing attention, as in many practical problems it is clear
that only a few variables are likely to be affected. A typical example is the
detection of DNA copy number variants, where some variants might only be
shared across a few samples. Siegmund et al. (2011) incorporated a prior guess
p0 on the fraction of affected variables. Cho and Fryzlewicz (2015) use a hard-
thresholded L1-aggregation of local CUSUM statistics. Jirak (2015) proposes an
L∞-aggregation, i.e., the maximum of the absolute local CUSUM statistics, and
is the first to study (P5). Enikeeva and Harchaoui (2019) propose a statistic based
on ordered local CUSUM statistic in combination with an L2-aggregated CUSUM
test to obtain optimal rates of convergence for both sparse and dense changes
in independent Gaussian data. Cho (2016) suggests to aggregate the ordered
local CUSUMs by another coordinate-wise CUSUM transformation. Lastly,
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Wang and Samworth (2018) derive an optimal projection (i.e., aggregation) of
CUSUMs, and offer a consistent estimator of this projection direction by a sparse
singular value decomposition on the CUSUM transformed data. Note that Jirak
(2015) and Wang and Samworth (2018) also extend their methods to allow for
cross-dependence.

There are few penalised cost-based methods for the high-dimensional setting.
Two contributions in this direction are Fisch et al. (2019b) and Tickle (2020,
Chapter 4), who derive methods for detecting both sparse and dense changes in
cross-independent data that are easy to adapt to any parametric model for the
marginal distributions.

Most recent high-dimensional literature considering cross-dependent data
focus on dense changes (Westerlund, 2019; Bhattacharjee et al., 2019; Li et al.,
2019; Wang and Shao, 2020). An interesting exception is Maeng (2019, Chapter
5), who also considers temporal dependence, but does not estimate which
variables are affected (problem (P5)). An approach for detecting both sparse
and dense changes in the mean of cross-correlated data that is computationally
scalable and indicates which variables are affected is generally missing in the
literature. We aim to fill this gap by a penalised cost approach in Paper IV.

Changes in the covariance matrix Assessing stability of the covariance
matrix of multivariate observations has gained significant recent interest. One
reason is that many methods for detecting changes in the mean assume that the
covariance matrix is constant over time. The thorough analyst should therefore
assess whether this assumption holds. Changes in the covariance matrix—or,
equivalently, the precision matrix—may also be of independent interest. Kao
et al. (2018), for instance, list several practical problems within finance and
economics where this is the case.

Methods for detecting changes in the covariance matrix were first proposed
for quality control purposes, e.g. the Gaussian likelihood ratio approach of
Sullivan and Woodall (2000) or other control charts (see the review article of Yeh
et al. (2005)). An early maximum likelihood treatment of the multiple changes
in mean and covariance matrix problem is Maboudou-Tchao and Hawkins (2013),
who additionally use the segment neighbourhood algorithm as their search
method. Even though it is not connected to a specific publication, note that
it is relatively straightforward to plug the Gaussian likelihood with unknown
mean and covariance matrix and a linear penalty into the penalised cost (2.3)
and optimise with PELT, for instance.

The CUSUM-based work of Aue et al. (2009) marks the starting point of the
modern, more theoretically oriented line of research on offline covariance change
detection methods. Their method and analysis is impressive as it also considers
temporal dependence. Bai (2010) considers changes in the variances (in addition
to the means), but not in a general covariance matrix. Later, CUSUM-based
methods for covariance changes have been investigated by Cho and Fryzlewicz
(2015), Kao et al. (2018), Wang et al. (2018) and Dette et al. (2020). All these
methods assume that the mean is constant and the change is dense, except the
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very recent work of Dette et al. (2020), where potential sparsity is addressed.

Other recent approaches are proposed by Roy et al. (2017), who consider
changes in sparse Markov random field models, which includes sparse precision
matrices in Gaussian data as a special case, Avanesov and Buzun (2018), who
offer a moving sum-based method applicable both in the offline and online
setting, and Wang et al. (2019), who utilise U-statistics and self-normalisation
to detect changes in both the mean and covariance matrix. Lastly, Grundy et al.
(2020) propose a method for detecting changes in the means and variances of
high-dimensional (Gaussian) data by mapping the data into two dimensions—one
highlighting changes in mean, and the other highlighting changes in the variance.

Research on changes in high-dimensional covariance matrices is still on an
infant stage compared to changes in the mean. The p(p − 1)/2 parameters
involved makes the problem much tougher computationally, and almost all
published work has only considered the scenario of dense changes. In Paper I
and Paper II we investigate how the classical principal component analysis can
be used to alleviate the computational burden. We also consider sparse changes
in the covariance matrix.

Changes in other features In many practical situations it can be hard to know
both the distribution of the data as well as exactly what type of distributional
change is of interest. Hence, deriving nonparametric methods for detecting
changes in multivariate data is a hot topic. Needless to say, this is a hard
problem in general, both theoretically and computationally, but even more so in
high-dimensional settings where the curse of dimensionality kicks in. Be aware
that nonparametric methods can be used for detecting the already discussed
changes in mean and covariance matrix, but is expected to be less powerful
compared to methods specifically made for a particular type of change.

Examples of contemporary multivariate nonparametric change detection
methods are the approach based on hierachical clustering and distance measures
of Matteson and James (2014), the kernel-based methods of Harchaoui and Cappe
(2007), Arlot et al. (2019) and Padilla et al. (2020), the graph-based methods of
Chen and Zhang (2015), Chu and Chen (2019) and Liu and Chen (2020), as well
as Zhang et al. (2017), who use energy statistics and the Kolmogorov-Smirnov
test. Note that all these methods assume that observations are independent in
time, and no distinction is made between sparse and dense changes.

We also remark that detection of changes in the quite general class of vector
autoregressive models is investigated in Kirch et al. (2015), Safikhani and Shojaie
(2020) and Wang et al. (2020b). In addition, Liu et al. (2020) very recently
proposed a framework based on U-statistics and CUSUMs for detecting a change
in any high-dimensional parameter, with power against sparse and dense changes
simultaneously.
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2.3 Changepoint-based anomaly detection

One of the many applications of changepoint models is anomaly detection. That
is, detecting significant deviations from some baseline behaviour of the data.
For example, Olshen et al. (2004) use a changepoint model to detect DNA copy
number variations, which might indicate cancer or other diseases; Fisch et al.
(2019a) detect an exoplanet based on inferring changes in lightcurve data from a
star; and we detect overheating of a ship’s propulsion motor in Paper III.

The general changepoint models (2.1) or (2.2) are only useful for detecting
certain types of anomalies. In the comprehensive review of Chandola et al.
(2009), anomalies are divided into three classes: Global, contextual and collective
(the names of the classes are from Fisch et al. (2019a)). Global and contextual
anomalies are defined as single observations not conforming to either the global
or local pattern of the data. E.g., a temperature measurement of 40◦C in Oslo
is a global anomaly as it would be a highly unusual temperature any time of the
year, whereas a measurement of 10◦C would only be a contextual anomaly during
the winter. Following the terminology of Fisch et al. (2019a,b), we call both
global and contextual anomalies point anomalies as they are both single outlying
observations. Collective anomalies are collections of related observations that
are anomalous only when viewed together. For example, an average temperature
of 13◦C during April in Oslo, compared to the normal of around 10◦C. It is
primarily collective anomalies the general changepoint models are capable of
detecting, while the presence of point anomalies is known to cause trouble in the
form of inaccurate additional changepoints being added (Fearnhead and Rigaill,
2019). In addition, the general changepoint model does not utilise the fact that
there is a common baseline distribution for the data in many anomaly detection
applications.

On the other hand, classical outlier detection techniques and many existing
anomaly detection methods from the machine learning community are not suitable
for detecting collective anomalies (Chandola et al., 2009). These methods are
made with the aim of detecting point anomalies, and often does not consider
the relatedness of observations, for example their time-ordering.

Based on these observations Fisch et al. (2019a,b) develop the penalised cost-
based framework collective and point anomalies (CAPA) for jointly detecting
both point and collective anomalies. The anomaly model first assumes that xt
has a baseline distribution f(x|θ0). Each of the K anomalies are then modelled
by two changepoints; one change from the baseline distribution at time sk, and
one change back at time ek, where {(sk, ek]}Kk=1 form non-overlapping intervals.
Such changepoints are known as epidemic changepoints in the literature (Kirch
et al., 2015). This model can be described by

xt ∼


f(x|θ1) for t = s1 + 1, . . . , e1

...
f(x|θK) for t = sK + 1, . . . , eK
f(x|θ0) otherwise,

(2.9)
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where θk 6= θ0 for k = 1, . . . ,K, sk < ek and sk+1 ≥ ek. In this model, point
anomalies are simply defined as anomalies of length 1, i.e., when sk = ek, while
collective anomalies have length greater than 1; ek − sk ≥ 2. To distinguish
the two cases, let {(sk, ek)}Kk=1 refer to the collective anomalies, while O ⊆ [n]
denotes the set of point anomaly locations. As in the general changepoint model,
the aim is to estimate K, {(sk, ek)}Kk=1 and O, as well as θ1, . . . ,θK . The
baseline parameter θ0 is assumed to be known, but it is estimated robustly from
the data in practice.

Inference on the positions of the anomalies from data is done by using a
PELT type algorithm for efficiently solving

max
K,{(sk,ek)}K

k=1,O

[
K∑
k=1

S(sk, ek) +
∑
t∈O

S′(xt)
]
, (2.10)

subject to ek − sk ≥ 2 and no overlap between the intervals specified by
{(sk, ek)}Kk=1 and O. In (2.10), S(s, e) is the penalised saving for introducing an
anomaly, defined as the cost-based test statistic

S(s, e) := C(x(s+1):e,θ0)−min
θ
C(x(s+1):e,θ)− β, (2.11)

where β is a penalty for adding an anomaly. S′(xt) is the penalised saving for
adding a point anomaly at t, and is defined as S(t− 1, t), but with a separate
penalty β′. Note that maximising the penalised savings in (2.10) is equivalent
to minimising the penalised cost. Also, S(s, e) with the log-likelihood cost
corresponds to the likelihood ratio test of whether x(s+1):e has parameter θ0
or not, with threshold β. Fisch et al. (2019a,b) derive penalties for collective
and point anomalies based on controlling the false positive rate in independent
Gaussian data. In practice, the penalty can be tuned to achieve a desired false
positive rate on a training set consisting exclusively of baseline observations, if
available.

The article of Fisch et al. (2019b) concerns anomaly detection in multivariate
data, where it might be that only a sparse subset Jk ⊆ [p] of variables are
anomalous, as in the general changepoint model. In this case, the penalty in
(2.11) is switched with a penalty function P (|J|) such that the method becomes
powerful for detecting both sparse and dense anomalies. In Paper IV, we extend
their method by allowing explicit modelling of cross-dependence.

It should be noted that several other authors tackle the problem of detecting
epidemic changes, for instance Olshen et al. (2004), Zhang et al. (2010), Kirch
et al. (2015), Aston and Kirch (2018), and Zhao and Yau (2019). Methods from
sparse mixture detection are also suitable for detecting epidemic changes, e.g.
Jeng et al. (2013) who utilise the higher-criticism test of Donoho and Jin (2004).
Yet other methods aim to be robust against outliers (Fearnhead and Rigaill,
2019), or include inference regarding point anomalies (Maeng and Fryzlewicz,
2019).
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2.4 Other approaches and related problems

So far in this chapter, we have covered frequentist methodology for detecting
abrupt changes in piecewise stationary data, where the changes are aligned across
variables in the multivariate setting. We will finish by pointing to important
related work outside this scope.

There are several directions of Bayesian changepoint analysis. One school of
thought formulates the changepoint problem as a hidden Markov model with a
fixed number of states, each state corresponding to a stationary segment between
changes (Chib, 1998). Inference is done by Markov chain Monte Carlo (MCMC)
and if the number of changepoints is unknown, reversible jump MCMC (Green,
1995) can be used to explore the model space. More recently, Ko et al. (2015)
proposed to use a Dirichlet process prior on the transition probabilities of the
hidden Markov model, avoiding the prespecification of the number of states,
and allowing for uncertainty measures both on the number and locations of
changepoints.

Another class of Bayesian changepoint methods uses the product-partition
model, of which prominent examples are Barry and Hartigan (1993) and
Fearnhead (2006). Here, the prior is put on the time between changepoints instead
of the transition probabilities. These approaches seek to avoid the difficulties of
setting up appropriate MCMC algorithms, and rather build models that allow
for quick and exact simulation from the posterior distribution of the number and
locations of changepoints. Bardwell and Fearnhead (2017) recently proposed
such a Bayesian method for detecting possibly sparse anomalous segments. We
will also mention a few examples of related Bayesian online methods at the end
of Chapter 3.

Somewhere between frequentist and Bayesian statistics lie methods for
constructing confidence distributions (Schweder and Hjort, 2016). That is,
distributions over the parameter space that can be used to visualise confidence
intervals at all confidence levels simultaneously. Cunen et al. (2018) propose a
framework for constructing confidence distributions for a single changepoint. As
the literature on obtaining uncertainty measures for changepoints outside the
Bayesian school is scarce, such methods could prove to be valuable.

When it comes to detecting changes in other models than covered here and
changes of different types, the literature is growing. Examples include detecting
changes in the covariates of regression models (Maeng, 2019; Lee et al., 2016;
Leonardi and Bühlmann, 2016), changes in network models (Zhao et al., 2019;
Bhattacharjee et al., 2020), multivariate changes that does not align perfectly in
time between variables (Fisch et al., 2019b; Bardwell et al., 2019; Eckley et al.,
2020), as well as fitting piecewise linear models rather than piecewise constant
ones (Fearnhead et al., 2019; Maeng and Fryzlewicz, 2019).
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Chapter 3

Online change and anomaly
detection

In the online mode of change detection, observations are processed sequentially
as they arrive, as opposed to the offline setting where an entire data set is
collected before analysed retrospectively. Looking back at problems (P1)-(P5)
posed for offline methods, online methods are primarily concerned with updating
inference regarding (P1)—testing whether a change has occured or not—for
every new observation xt given inference based on x1, . . . ,xt−1, potentially for
t → ∞. The aim is to detect that a true change has occured as quickly as
possible, while controlling the rate of false alarms if not. When a change has
been declared, offline methods can be used to answer the remaining questions
(P2)-(P5). Nevertheless, online methods typically also output an estimate of the
most recent changepoint and how the distribution has changed as a byproduct
of testing for the presence of a change.

The vast majority of existing online change detection methods are constructed
for solving some version of the following sequential hypothesis testing problem:

H0 : xt ∼ F0 for t = 1, 2, . . . .
H1 : There is a τ ≥ 0 such that

xt ∼ F0 for t = 1, . . . , τ,
xt ∼ F1 for t = τ + 1, τ + 2, . . . ,

(3.1)

where τ = 0 refers to the alternative hypothesis of all observations stemming
from F1. Note that this is the same model as (2.1) with K ∈ {0, 1} and n→∞.
It is typically assumed that there is a training set of m observations known to
be generated from F0 available. Most commonly, this training set is used to
pre-estimate F0, before considering F0 to be known in the sequential problem
(3.1). Alternatively, F0 is assumed unknown and its estimation brought into
the sequential problem to account for its estimation uncertainty, in which case
the training set is taken as the first m observations in (3.1) and the restriction
τ ≥ m added to H1. F1 can also be modelled as either known or unknown,
depending on the situation. As in the offline chapter, we primarily concentrate
on the parametric problem where Fk has a parametric density f(x|θk), k = 0, 1.

We remark that in the online context, the difference between an anomaly
and a change introduced in Section 2.3 is not as useful due to F0 being thought
of as a baseline distribution in either case. Thus, when we use “changes” in this
chapter, we might just as well have used “anomalies”.

A sequential or online change detection method for solving (3.1) is a stopping
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time N ∈ N ∪ {∞}. All methods we consider are of the form

N = inf{t ≥ 1 : T (x1:t) > bt}, (3.2)

where bt is a threshold function governing whether a test for a change at time t,
T (x1:t), is significant or not.

To specify what is meant by “controlling false alarms” and “quick detection”,
let P τ and Eτ denote probability and expectation under the model (3.1) when
there is a true changepoint at τ . In particular, P∞ and E∞ mean that there
is no changepoint and correspond to probability and expectation under H0. A
typical goal for a sequential method N is to find bt such that the average run
length (ARL) E∞[N ] is controlled at a user-specified level γ, and rank methods
based on their (worst-case) expected detection delay (EDD), given by

Ēτ [N ] := sup
τ
Eτ [N − τ |N > τ ]. (3.3)

The lower EDD or response time, the better. The ARL can be viewed as the
analog to controlling Type I error in the offline setting, while minimising EDD
corresponds to maximising power. It is also a common goal to minimise the
worst-worst-case EDD, due to Lorden (1971), defined as

sup
τ

ess sup
x1,...,xτ

Eτ [(N − τ)+|x1, . . . ,xτ ]. (3.4)

However, it is often overly conservative and difficult to work with analytically,
so the EDD in (3.3) has become more popular. Polunchenko and Tartakovsky
(2012) can be consulted for a discussion on most classical performance measures.

A naive way of constructing a method for the online problem would be to
apply one of the offline methods from Chapter 2 to the entire batch of data for
every new observation. However, doing so results in a highly dependent and
complicated multiple testing task, and as the sample size potentially goes to
infinity, it is not feasible computationally. Thus, in addition to detecting changes
quickly, an algorithm for online change detection should have computational
complexity not depending on the current sample size t when updating inference
from one observation to the next (Chen et al., 2020).

In the rest of this chapter, a brief overview of online change detection
methods is given. The literature on online change detection is far sparser than its
offline counterpart. Nevertheless, useful recent surveys include Aminikhanghahi
and Cook (2017) and Polunchenko and Tartakovsky (2012), and the two books
Siegmund (1985) and Basseville and Nikiforov (1993) give a thorough introduction
to classical sequential methods. Our main focus is on methods that are related
to the work in the papers of this thesis and fit within the online change detection
framework just described. Section 3.1 introduces the most popular classical online
methods in the univariate setting, before the multivariate setting is covered in
Section 3.2. Section 3.3 provides pointers to recent research on related problems
and methods outside the current scope.
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3.1 Classical methods—univariate data

CUSUM methods CUSUM statistics play an equally important role in online
as in offline change detection. As mentioned in Section 2.1, around (2.8), the
CUSUM referred to in the online literature is not the same as in the offline
literature, but they have a lot in common. Most importantly, both can be written
in terms of cumulative sums and arise from likelihood ratio tests. The offline
CUSUM originates from a likelihood ratio test between two unknown means in
Gaussian data with known variance, whereas the online CUSUM of Page (1954)
arises from a likelihood ratio test between two simple hypotheses;

T (x1:t) = max
k<t

t∑
i=k+1

log f(xi|θ1)
f(xi|θ0) , (3.5)

where θ0 and θ1 are fixed pre- and post-change parameters. An online CUSUM
method is then obtain by plugging (3.5) into (3.2), together with a constant
threshold bt = b tuned to achieve an appropriate ARL.

A major contributor to the CUSUM’s popularity is the fact that it can be
written in the following recursive form:

T (x1:t) = St =
(
St−1 + log f(xt|θ1)

f(xt|θ0)

)+
, (3.6)

where S0 = 0 and (·)+ := max(0, ·). This recursion is obtained by viewing the
CUSUM (3.5) as a repeated sequential probability ratio test with lower boundary
0 and upper boundary b (Basseville and Nikiforov, 1993, p. 38). Every time
T (x1:(t−1)) is below 0—i.e., the null hypothesis of no change is accepted—the
test is restarted. In addition, the CUSUM’s simple form facilitates theoretical
analysis. As t → ∞ the CUSUM behaves like a Brownian motion (Siegmund,
1985), which can guide the selection of the threshold b. It has also been proven
that the CUSUM is optimal in terms of minimising the worst-worst-case EDD
(3.4) asymptotically as the ARL γ → 0 (Lorden, 1971), and for every γ > 0
(Moustakides, 1986).

The most problematic aspect of Page’s CUSUM is that it not only assumes
the pre-change distribution to be known, but also the post-change distribution,
which is rarely the case in practice. A number of tweaks to the CUSUM have
therefore been proposed since its initial release, aiming at adapting to unknown
distributions while retaining the simple computational form. In Paper III, we
use the post-change adapting CUSUM of Lorden and Pollak (2008) for detecting
overheating in ship engines. Other examples of CUSUMs adapting to unknown
pre- or post-change parameters are Pollak and Siegmund (1991) and McDonald
(1990).

Generalised likelihood ratio methods An alternative class of online change
detection methods for handling unknown parameters in both the pre- and
post-change distribution are generalised likelihood ratio (GLR) methods. They
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incorporate maximum likelihood estimation of the unknown parameters. Hence,
in the case of known pre-change parameter and unknown post-change parameter,
GLR methods are defined by test statistics of the form

T (x1:t) = max
k<t

sup
θ∈Θ

[
t∑

i=k+1
log f(xi|θ)

f(xi|θ0)

]
, (3.7)

where Θ is a subset of the parameter space (see Basseville and Nikiforov (1993)
or Lai (1995)). In the case of exponential families and composite alternative
hypotheses, such statistics are optimal in the sense of Lorden (1971). Additionally
assuming an unknown pre-change parameter brings us back to a statistic of
the form (2.7) with log-likelihood cost (2.4), maximised over all τ < t for each
new observations xt. Unfortunately, in either case, the maximisation over the
parameter space for each t and k < t implies that plain GLR methods have
computational complexity growing to infinity with the sample size.

Several solutions to alleviate the computational burden of GLR methods
have been proposed, of which some are listed in the introduction of Lai (1995).
The perhaps most widely used solution is to restrict the maximisation over
candidate changepoints k to a set K ⊆ [t− 1], for example a window of length
w; K = {k ≥ 0 : t − w < k < t}. The effect of using a window is that only
changes of a certain minimum size can be detected, with wider windows allowing
for detectability of smaller changes and vice versa. Lai (1995) discusses how
K can be constructed such that a vanishingly small amount of performance is
lost. Such tricks bound the number of operations GLR methods need to update
inference from one observation to the next, but the computational burden remains
significantly larger than for CUSUM methods.

Moreover, note that it is significantly more complicated to evaluate the
distribution of a GLR stopping time (3.2) than one based on a CUSUM. This is
the case even for a change in mean in Gaussian data with known variance and pre-
change mean, although Siegmund and Venkatraman (1995) derive approximations
to the ARL that are quite accurate.

Other methods Several other methods have frequently been used for change
detection, many originating from statistical process control. Two prominent
examples are the Shewart’s chart (Shewhart, 1925) and the exponentially
weighted moving average chart (Hunter, 1986).

An alternative to the GLR statistic for an unknown post-change parameter
is the so-called “mixture” or “weighted” likelihood ratio approach of Pollak and
Siegmund (1975). Rather than maximising over the unknown parameter in (3.7),
the mixture likelihood ratio approach integrates the likelihood ratio with respect
to some probability distribution of the post-change θ.

The final classical method we mention is the Shiryaev-Roberts chart, due to
Shiryaev (1963) and Roberts (1966). The Shiryaev-Roberts chart is a Bayesian
analog to Page’s CUSUM, and is given by exchanging the maximisation with
summation in (3.5). It is a rather popular method as it is provably optimal in a
certain Bayesian sense (see Polunchenko and Tartakovsky (2012, Section 4)).
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3.2 Multivariate methods

We now present some important contributions to online change detection in
multivariate data. As in the offline setting, the point of taking a multivariate
approach is to be able to detect smaller changes more reliably than would be
possible by a set of univariate methods. The distinction between sparse and
dense changes is just as relevant in the online setting, as well as the additional
challenge (P5) of identifying which variables are changing.

Changes in the mean For the prototypical change in mean setting, a major
line of research on multivariate methods considers different ways of aggregating
sequential changepoint tests applied to each univariate time series x(j)

1:t , for
j = 1, . . . , p. Roughly, Tartakovsky et al. (2006), Siegmund and Yakir (2008)
and Mei (2010) propose aggregation-based tests for dense changes, while Xie
and Siegmund (2013), Liu et al. (2017) and Chan (2017) focus on sparse changes.
All these works consider individual tests of either CUSUM, GLR or Shiryaev-
Roberts type, except Liu et al. (2017) who consider aggregation of any individual
test of choice. Chan (2017) proves that his GLR-based method is optimal for
detecting positive mean changes in the worst-worst-case sense of Lorden (1971).
Alternative methods include the higher-criticism-based method of Zou et al.
(2014a), the sketching- and dimension reduction-based method of Cao et al.
(2019), as well as the recently proposed method of Chen et al. (2020), who
combine CUSUMs both over variables and different post-change sizes of the
means.

Changes in the covariance matrix Online detection of changes in the
covariance matrix has yet to receive sufficient attention in the modern literature.
An overview of methods for this problem from statistical process control is
given by Yeh et al. (2005), and Sullivan and Woodall (2000) as well as Hawkins
and Zamba (2009) study the GLR for detecting general changes in the mean
and/or covariance matrix of multivariate normal data. Recent contributions
are the moving sum-based approach of Avanesov and Buzun (2018) and the
CUSUM-based method of Xie et al. (2018) for detecting changes in a spiked
covariance matrix model. To the best of my knowledge, all existing methods are
constructed to be efficient for dense alternatives. Detecting sparse changes in
the covariance matrix is a problem we investigate in Paper II.

Changes in other features For sequentially detecting changes in other
features than the mean or covariance matrix, one strategy is to decide on
a likelihood for the data and construct a multivariate CUSUM or GLR test in
a similar way as described for the univariate case in Section 3.1. Alternatively,
one of the aggregation strategies for changes in the mean can be applied to
any univariate or lower dimensional likelihoods of choice, as suggested by Liu
et al. (2017). Recent nonparametric methods are the kernel-based method of Li
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et al. (2015) and the method based on windowed Kolmogorov-Smirnov tests of
Madrid Padilla et al. (2019).

3.3 Other approaches

Not all the online literature fall nicely within the framework of controlling the
ARL and minimising EDD (3.3). One deficiency of the classical methods is that
the probability of declaring a change goes to one as t goes to infinity, i.e., a
false alarm will eventually be raised. As a remedy, Chu et al. (1996) propose
a different framework enabling control of P∞(T <∞) at a chosen significance
level α under the asymptotic regime of m—the size of the training set—going to
infinity. This approach has gained popularity in recent years, with methodology
applicable in very general data scenarios being put forward by e.g. Aue et al.
(2012), Kirch and Tadjuidje Kamgaing (2015) and Gösmann et al. (2020).

As online methods aim to update inference incrementally as data arrive, a
Bayesian formulation in terms of updating the posterior distribution for every new
observation seems a very natural one. Adams and MacKay (2007) and Fearnhead
and Liu (2007) initialised the line of research on such methods. They utilise the
product partition model as in the offline setting, and put a prior on the length
between successive changepoints. These Bayesian methods are closer in spirit to
offline methods as they aim to estimate the number and locations of changepoints,
but in an online fashion, rather than detecting changes as quickly as possible.
In addition, they have the advantage of providing uncertainty quantification of
all unknown parameters, given the prior. Recent contributions to this class of
methods include Ruggieri and Antonellis (2016), who introduce less informative
priors, the multivariate anomaly detector of Bardwell and Fearnhead (2017) and
the outlier-robust methodology of Knoblauch et al. (2018).
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Chapter 4

Summaries of the papers

4.1 Paper I

Tveten, M. (2019). Which principal components are most sensitive
in the change detection problem? Stat, 8(e252).

Principal component analysis (PCA) is arguably the most common method for
reducing the dimensionality of multivariate data. It has been used for numerous
applications both in statistics and machine learning, and it is therefore no
surprise that it also forms the basis of many multivariate anomaly detection
methods. In this short article, the behaviour of PCA within the change de-
tection problem is investigated through a notion of each pre-change principal
component’s sensitivity to a change.

To be precise, consider the single changepoint setup where xt ∼ N(µ0,Σ0)
for t = 1, . . . , τ , and xt ∼ N(µ1,Σ1) for t = τ + 1, . . . , n. Now let {λj ,vj}pj=1
denote the normalised eigensystem of the pre-change Σ0, ordered decreasingly in
λj . Our objects of interest are the pre-change principal components yj,t = vᵀ

jxt.
Before a change, the distribution of yj,t is p(y) = N(y|0, λj), while after a
change, the distribution of yj is q(y) = N(y|vᵀ

jµ1,v
ᵀ
1Σ1v1), where it is assumed

without loss of generality that µ0 = 0. The sensitivity to a change of the j’th
pre-change principal component is then defined as the Hellinger distance between
its marginal distribution before and after a change, given by H(pj , qj).

The main contribution of this paper is to prove that for bivariate normal
data, the least varying pre-change principal component, y2,t, is the most sensitive
for a range of pre-change covariance matrices Σ0, and changes µ1 and Σ1. Most
notably, y2,t is almost always the most sensitive if only a single parameter of
the original distribution changes, i.e., in cases where one of the means, one of
the variances or the correlation parameter of the original data change. This
result suggests that the least varying pre-change components should be used for
detecting sparse distributional changes in higher dimensional data as well.

4.2 Paper II

Tveten, M. and Glad, I. K. (2019). Online detection of sparse
changes in high-dimensional data streams using tailored projections.
Manuscript.

This article builds on the insights from Paper I to propose a method for
tailoring the choice of pre-change principal components to a specific change
or anomaly detection problem. We call this method tailored PCA (TPCA),
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and it is implemented in the accompanying R package tpca. In addition, we
combine TPCA with an extension of the online change detection scheme of Xie
and Siegmund (2013) to create a method for detecting changes both in the mean
and the covariance matrix of potentially high-dimensional data. As mentioned
in Chapter 3.2, online detection of changes in variance and correlation is an
understudied subject. Note that TPCA can also be used in the offline setting.
It is especially suitable for anomaly detection because of the explicit assumption
of a baseline parameter that the choice of pre-change principal components can
be based upon.

To select pre-change principal components by TPCA, the following ingredients
are needed: A pre-change covariance matrix, Σ0, a divergence measure, a
distribution over the post-change parameter space called the change distribution
and a cutoff value c ∈ [0, 1]. In the paper, we use the Hellinger distance
throughout in agreement with Paper I, but the tpca R-package allows any
measure of divergence to be used. Using the notation of Section 4.1, we aim to
rank the principal components’ sensitivity to changes by

Pj := P
(
argmax

1≤i≤p
H(pi, qi) = j|Σ0

)
(4.1)

for j = 1, . . . , p, where the probability is taken with respect to the change
distribution. In practice, simulations from the change distribution is used to
estimate Pj . TPCA selects the pre-change principal components indexed by

J = min
I⊆{1,...,p}

∑
j∈I

Pj ≥ c. (4.2)

In our simulated test scenarios, J almost always corresponds to a small subset of
the least varying pre-change principal components, often facilitating a dimension
reduction of 80− 98% for c ∈ [0.8, 0.999].

In the simulations for assessing the performance of our TPCA-based online
change detection method, we focus on detecting both sparse and dense changes
in the mean, variance and correlation. If the correlation coefficients in Σ0 is
sufficiently large, we find evidence of our method being able to detect changes
quicker from a small set of principal components than the baseline method of
Xie and Siegmund (2013). I.e., we observe quicker detection and computation
simultaneously. For weaker pre-change cross-correlation, this clear advantage is
not present, but significant dimension reduction is still possible without a great
loss in performance.

At the end of the paper, we illustrate how our method can be used on time-
dependent data by using dynamic PCA in place of the classic PCA, and compare
our method to dynamic PCA as used within stochastic process control. This
illustration is performed on a realistically simulated dataset of the Tennessee
Eastman Process. We find that, in settings where there is no extra validation
set for tuning the detection threshold, our method is superior to the classical
dynamic PCA method.
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4.3 Paper III

Hellton, K. H., Tveten, M., Stakkeland, M., Engebretsen, S., Haug,
O. and Aldrin, M. (2020). Real-time prediction of propulsion motor
overheating using machine learning. Submitted for publication.

In this paper, online change detection methodology is applied to predict
overheating in electrical propulsion motors onboard marine vessels. Technology
that protects the motors from overheating is obviously critical for the safety of
a ship and those on board. The data used in this study contain observations
from four vessels, each with three motors and six temperature sensors at various
locations per motor, over time periods ranging from 80 to 294 days.

Almost all of the data is collected during normal operating conditions, but
there is one known overheating event in one of the vessels’ motors. The main
contribution of this paper is to show that by using mostly basic statistical tools,
the onset of similar overheating events can be detected reliably 60-90 minutes in
advance, and thereby avoided in the future. Parts of the method have already
been implemented as a new thermal protection function on several ships.

First, we construct a simple but general linear model for predicting the
sensor-observed temperatures from other operating variables of the vessel under
normal conditions—power and speed of the motors, for example. Then the six
series of residuals of the actual temperature observations and the predictions
are monitored simultaneously for large, positive changes in the mean by a
combination of an adaptive version of the CUSUM (Lorden and Pollak, 2008)
and the shrinkage-aggregation framework proposed by Liu et al. (2017). If a
sufficiently large, positive change in the residuals’ mean is detected, this is taken
as an initial sign of overheating, and an alarm is raised.

In this application, it is not only important to be able to detect an emerging
overheating event in a timely fashion, but also to keep false alarms to an absolute
minimum. If false alarms are too frequent, the operators of the vessel is likely
to put a piece of tape over the red lamp meant to indicate an impending fault,
which, needless to say, could be catastrophic. Consequently, a methodological
contribution of this article is an automatic tuning procedure for the change
detection algorithm that takes as input the acceptable number of false alarms in
the fault-free training data. This tuning procedure uses information about the
known fault—making it a supervised method—and thus risks to overfit to the
single observed overheating event. A mechanism for balancing early detection
with a countering of overfitting is therefore also built in.

4.4 Paper IV

Tveten, M., Eckley, I. A. and Fearnhead, P. (2020). Scalable change-
point and anomaly detection in cross-correlated data with an applica-
tion to condition monitoring. Invited to submit a revision to Annals
of Applied Statistics.
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We study and propose methods for the offline multiple anomaly and change
detection problems in multivariate data when variables are cross-correlated and
changes occur in an unknown subset of the mean components. In addition,
we demonstrate the anomaly detection method’s usefulness for sensor-based
condition monitoring of an industrial process pump. The paper is accompanied
by the R package capacc, providing efficient implementations of our methods.

The first main methodological contribution of the paper is the derivation
of the penalised cost-based methods CAPA-CC (collective and point anomalies
in cross-correlated data) and CPT-CC (changepoints in cross-correlated data)
for solving each of these problems in a computationally efficient manner. Both
methods are built on a particular approximation of the penalised saving (2.11)
corresponding to a penalised Gaussian likelihood ratio tests for a single anomaly
or change. Encapsulating these tests for a single change or anomaly, CPT-CC
uses a binary segmentation type algorithm to detect multiple changes, while
CAPA-CC uses a PELT type algorithm to detect multiple anomalies.

An approximation of the penalised saving is necessary for a moderately large
p, as the exact maximum likelihood estimator of a subset mean in correlated
data corresponds to a combinatorial optimisation problem, as far as we can see.
The approximation we propose is motivated from the form of the maximum
likelihood estimator and corresponds to what is known as an unconstrained
binary quadratic program. Such binary quadratic programs are of the form

max
u∈{0,1}p

uᵀAu + uᵀb + c, (4.3)

where A is a real, symmetric, (p×p)-dimensional matrix, b is a real, p-dimensional
vector and c is a real scalar. A second major result in the paper, of possibly
independent interest, is a dynamic programming algorithm requiring O(p2r)
operations for obtaining an exact solution to (4.3) when A is r-banded. This
algorithm is inspired by the optimal partitioning algorithm (2.5) in the way of
proceeding recursively through the variables d = 1, . . . , p and conditioning on
the optimal penalised saving for variables 1, . . . , d− 1 at each d.

In our problems, A is banded if the precision matrix Q is banded. As a
consequence, a banded estimate of Q is required for our methods to be scalable.
To obtain an estimate of a desired band we utilise a robust version of the
GLASSO algorithm. An important result from our simulation study is that our
method performs advantageously compared to other methods in terms of power
and estimation accuracy in a range of data settings, also when a truly dense
precision matrix is approximated by a banded estimate.

The simulation study also points to interesting facts about which scenarios
incorporating cross-correlations is favourable in the change or anomaly detection
analysis compared to ignoring it. Surprisingly, if the change is dense and the
changed mean components have similar values, ignoring cross-correlations results
in a more powerful method.

28



Chapter 5

Discussion
In Chapters 2 and 3, we introduced the offline and online change detection
problems, respectively, and briefly summarised parts of the statistical literature
on these topics. The literature review is only meant to provide context for
Papers I–IV—summarised in Chapter 4—and is by no means exhaustive. In
this chapter, I discuss the papers critically, pointing to limitations and possible
improvements not already mentioned in the papers. It is therefore advantageous
to read the papers in full length in advance. The chapter is concluded by a
discussion of some open challenges and future directions of the change detection
field in general.

5.1 Discussion of the papers

Paper I In this paper, I used the Hellinger distance between distributions
to define sensitivity to changes partly because it proved simple to work with.
It would have been interesting to obtain similar results using the Kullback-
Leibler divergence, however, as it is more directly linked to properties of change
detection methods. For example, for online methods, Lorden (1971) showed that
the optimal worst-worst-case detection delay (3.4) is governed by

D̄(g, f) := log γ
I(g, f) , (5.1)

asymptotically as γ (the ARL) goes to infinity, where I(g, f) is the Kullback-
Leibler divergence from the pre-change distribution f to the post-change
distribution g;

I(g, k) :=
∫

log g(x)
f(x)g(x)dx. (5.2)

Thus, comparing the Kullback-Leibler divergences I(pj , qj), where pj and qj are
the pre-change and post-change distributions of principal component j as in
Section 4.1, can be directly translated to how much quicker a particular change
can be detected by each principal component. By using the Hellinger distance,
we only get to know the ordering of which principal component will be the most
efficient to monitor.

Paper II Our TPCA method is a tool for testing the usefulness of the knowledge
and concepts from Paper I in practice. Empirically, it seems to work well, but
unfortunately, we have little theory to support it. For instance, it would be
beneficial to get some measure of uncertainty on the selected subset J in
(4.2), and some guidance on the number of Monte Carlo simulations needed to
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approximate the distribution (4.1) well. For our chosen measure for ranking the
axes (4.1)—the probability of a principal component being the most sensitive
with respect to a distribution over changes—this is hard to obtain. Thus, in a
future version of the manuscript, an option is to change the selection criterion
for which principal components to monitor to one that can offer more in terms
of guarantees on performance.

One such alternative selection criterion we have started to explore is based on
the Kullback-Leibler divergence and its connection to the detection delay (5.1).
The idea is to keep enough principal components such that a minimum of c100%
of the information about changes occuring according to a change distribution is
conserved with probability 1−α, for chosen c, α ∈ (0, 1). This can be formalised
as the problem of finding the minimal J such that

P

(∑
j∈J

Ij

/ p∑
j=1

Ij ≥ c
)
≥ 1− α (5.3)

holds, where Ij := I(pj , qj). Through this criterion, we can specify how
much loss in detection speed is permissible at some probability 1 − α, as
D̄ ≥ log γ/(c

∑p
j=1 Ij) with probability 1−α when monitoring the (5.3)-selected

principal components. Moreover, for a multivariate Gaussian change distribution
for the mean, µ ∼ N(θ,Γ), combined with a Kullback-Leibler divergence between
two Gaussians in Ij , the distribution (5.3) for a fixed J is possible to derive
analytically; it can be expressed as the probability distribution of a quadratic
form µᵀAµ, known to be distributed as a linear combination of independent
non-central chi-square random variables. Motivated by the results of the minor
principal components being the most sensitive, an approximate minimisation
over J can be performed by starting from J = {p}, and progressively adding
more and more varying components until the criterion (5.3) is met. Results of
this flavour could be useful as computationally efficient default settings, and to
approximate more complicated change and data distributions.

More generally, we would like to address the choice of change distribution
more thoroughly in the future. In the current manuscript, the change distribution
used throughout represents little prior information, but it might seem quite
arbitrary. As mentioned in the previous paragraph, finding a choice of change
distribution that enables selection of the tailored principal components in a less
brute force manner than Monte Carlo simulation would be highly beneficial.
Such change distributions could then be studied under misspecified scenarios to
assess the value of setting up a more complicated change distribution.

In the simulation study, we have divided results into classes of “low” and
“high” correlation based on the value of the αd parameter in the method of Joe
(2006) for generating random correlation matrices being less than or greater than
1. The motivation for using this method was to obtain a large range of different
correlation matrices. However, it is not that easy to interpret the size of the
correlations in each class. Selecting a few simpler classes of correlation matrices
as test beds, as we did in Paper IV, might therefore provide more informative
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results in terms of how strong the correlation must be for TPCA to perform
better than the mixture procedure of Xie and Siegmund (2013).

Today, there are also more methods it would be relevant to compare
performance with, especially the methods mentioned in the paragraph on
detecting changes in the covariance matrix of Section 3.2.

Paper III The aim of this paper was to propose a method for detecting when a
ship’s motor is about to fail. Specifically, the method had to be able to predict
an observed fault in a historical data set sufficiently early in advance with a
minimal amount of false alarms, be generalisable to other ships and motors,
as well as be simple conceptually and simple to implement on the on-board
system of the ship. The two latter requirements lead us to using simple i.i.d.
Gaussian models for the data, both when constructing the model for the motor
temperature and when monitoring the residuals. These modelling assumptions
were justified because the size of the change in mean signalling the observed
fault was large enough to be detected early with few false alarms, despite the
threshold having to absorb all aspects of the data not captured by the i.i.d.
Gaussian model. The lesson here, from a practical point of view, is that much
can be achieved by a very simple model.

However, other failures may not be equally pronounced as the one in our test
set. In failure cases with smaller changes, more effort must be put on modelling
the data. There are at least three improvements that would make detection
of significantly smaller changes possible, if we disregard the requirement of
implementational and conceptual simplicity. First, as mentioned in the discussion
section of the paper, there is a consistent bias in the temperature residuals for
each sensor. This is due to the model for generating the residuals being based
on the average temperature over the six sensors, such that individual differences
between the sensors are lost. One way of reducing the bias is thus to construct
a temperature model for each sensor by including a training period for each
motor. Note that a part of the bias is already handled by the parameter ρ in the
adaptive CUSUM, but lowering ρ is also of interest to be able to detect smaller
changes. A second improvement is to model the temporal dependence explicitly
in the change detection method. The improvement is likely to be remarkable
as the temperature residuals are very strongly auto-correlated as a consequence
of the motor temperature being a slowly varying process relative to the once
per second sampling rate. Thirdly, the spatial dependence between the sensors
is also strong, so modelling it would further increase detection power (as the
results in Paper IV show).

On the other hand, there will always be behaviour of the temperature sensor
data not captured by even an extremely complex model. From the point of
view of a change detection method, such deviations from the model will often
be interpreted as evidence for a change. Thus, a reformulation of the change
detection problem relevant to this application is to only detect relevant changes.
The ρ-parameter in the adaptive CUSUM in practice filters out too small changes,
but another alternative is to incorporate the relevant size of a change directly in
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the hypothesis testing problem. For a change in mean in univariate data, this
means studying null hypotheses such as

H0 : |µ0 − µ1| ≤ ∆,

where µ0 and µ1 are the pre- and post-change means. Initial work on change
detection problems of this form has already been carried out by Dette and
Gösmann (2018).

Paper IV Much of the discussion of Paper III also applies to the application
of condition monitoring a process pump in Paper IV. Specifically, modelling of
temporal dependence and a more sophisticated model for removing trends in
the data associated with the operational state of the pump is likely to increase
performance. By “operational state”, I mean, for instance, the volume fractions
of the different fluids being pumped, their flow rate, the power of the pump, and
so forth.

An online version of CAPA-CC is needed to be able to monitor the pump in
real-time. In this particular application, the current offline version is primarily
useful for analysing historical data of the pump, either to prepare a training set for
an online method, or to explore when the pump has been running suboptimally
in the past, perhaps discovering previously unknown anomalous segments. Fisch
et al. (2020) recently showed how the univariate CAPA method can be made
sequential, and similar ideas can be used to create an online counterpart of
CAPA-CC.

On the methodological side there are also numerous possibilities for extensions.
In the penalised cost framework of our methods, we use a pointwise minimum
between a linear and a constant penalty on the number of changing variables.
Akin to the optimal partitioning algorithm in (2.5), the restriction to linear
penalties in the sparse regime is what allows for quick computation of the
penalised saving for a fixed changepoint or anomalous segment. There may,
however, be scenarios where a non-linear penalty is preferred, and Fisch et al.
(2019b) show that for intermediately sparse changes—that is, for p−1/2 < |J| ≤
p−3/4—in cross-independent Gaussian data, a third, non-linear penalty regime
is needed for optimal power. It is possible to accommodate for non-linear
penalties in our method by deriving a segment neighbourhood analog to our
optimal partitioning-inspired algorithm for computing the penalised saving. (The
segment neighbourhood algorithm is described at the end of the paragraph on
dynamic programming-based methods in Section 2.1.) By this, I mean that
in addition to sequentially conditioning on the optimal penalised saving until
variable d ≤ p, one can also condition on the number of changing variables,
starting from finding the single variable that increases the penalised saving
the most, before proceeding recursively until a maximum number of changing
variables, J̄ , is reached. Such an algorithm would scale quadratically in p if J̄
grows linearly in p. This is prohibitive for large p, but for moderately sized p, as
in our 5-dimensional pump data example, it may have practical value.

As CAPA-CC and CPT-CC are based on the multivariate Gaussian model,
it is of course relevant to explore other costs, both likelihood-based costs and
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others. It would be interesting to seek more general models where our algorithm
for solving binary quadratic programs can be used to approximate tests for
subset changes, or if it can find use in other tasks involving variable selection.

I am open to suggestions on how to obtain stronger theoretical results on
the quality of the approximate versus the exact penalised saving.

5.2 Open challenges in change detection

We conclude this introduction by discussing some interesting open challenges in
the change detection field.

A major issue with the vast majority of frequentist change detection methods
is that they only provide point estimates of changepoints, without a measure of
confidence in these estimates. The quality of changepoint estimates is mainly
assessed by proving their consistency and deriving convergence rates. As pointed
out by Paul Fearnhead in the discussion on Frick et al. (2014), additional
challenges with confidence intervals for changepoints arise when the the number
of changes are unknown, as is often the case. Should the confidence intervals
be constructed with respect to a fixed number of changepoints? How should
uncertainty on the number of changepoints be incorporated? And how can
confidence intervals for the number of changepoints be constructed? The
confidence intervals of Frick et al. (2014) rely on their method consistently
estimating the number of changepoints, and then asymptotic confidence intervals
for the changepoints are constructed conditional on the estimated number
of changes. Continuing to paraphrase Paul Fearnhead, it is not clear how
to interpret such confidence intervals in many real data settings, as there is
often significant uncertainty regarding the number of changes. The confidence
distribution approach of Cunen et al. (2018) would face similar challenges as
they assume there is maximally a single changepoint. Bayesian methods, on the
other hand, are able to incorporate uncertainty on both the number and location
of changepoints simultaneously, and may be the only option for full uncertainty
quantification. However, such Bayesian inference is of course conditional on the
often subjectively specified prior.

In many applied problems, including both the ship motor and pump
monitoring problems of Paper III and Paper IV, the mean function of the data
is not constant or linear between changepoints, but contains local fluctuations
or trends of a complicated functional form. In our problems, a portion of these
trends can be ascribed to a time-varying context of the machines; the temperature
of the motor naturally increases as the motor’s power increases, for example.
Given the true relationship between the power and the temperature of the motor,
this trend could be removed entirely. In practice, however, relationships of this
sort have to be modelled and estimated, and variables explaining the trend might
not always be recorded. Some trends or local fluctations will, consequently,
often remain, no matter how hard one tries to remove them. Thus, change and
anomaly detection methods that allow the mean function between changepoints
to be smoothly time-varying or stochastic are likely to be useful in practice.
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Combine this with modelling of temporal dependence and outlier-robustness, and
the practical usefulness will increase even further. Initial work in this direction
has been carried out by Romano et al. (2020) for univariate data. Multivariate
and online versions are still to be explored.

Online or sequential change detection is still an underexplored problem
compared to the offline problem, despite the origin of change detection being
sequential. The current online field is mainly focused on the speed of detecting
a single change. However, in several applied settings, it is more important
that detection is reliable in terms of avoiding false alarms than quick, so long
as detection is “quick enough”. Consequently, a formulation of the online
change detection problem starting from what is sufficiently quick detection
before minimising the probability of false alarms might be fruitful. Moreover,
constructing online versions of the algorithms for existing offline methods could
be useful for adapting the online field to multiple change scenarios, thereby
bridging the gap between the two settings.
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Principal component analysis (PCA) is often used in anomaly detection and statistical process

control tasks. For bivariate normal data, we prove that the minor projection (the least varying

projection) of the PCA-rotated data is the most sensitive to distributional changes, where

sensitivity is defined as the Hellinger distance between the projections' marginal distributions

before and after a change. In particular, this is almost always the case if only one parameter of the

bivariate normal distribution changes, that is, the change is sparse. Simulations indicate that the

minor projections are the most sensitive for a large range of changes and pre-change settings in

higher dimensions as well, including changes that are very sparse. This motivates using only a few

of the minor projections for detecting sparse distributional changes in high-dimensional data.

KEYWORDS

machine learning, quality control, statistical process control

1 INTRODUCTION

It is popular to use principal component analysis (PCA) for anomaly detection and stochastic process control (SPC). Using PCA in SPC goes back

to the work of Jackson and Morris (1957) and Jackson and Mudholkar (1979), and its various extensions (see Ketelaere et al., 2015 and Rato

et al., 2016, for an overview) have been successfully applied to many real data situations. Within the machine learning literature on anomaly

detection, Mishin et al. (2014) use PCA for temperature monitoring at Johns Hopkins, Harrou et al. (2015) apply PCA-based anomaly detection

to find segments with abnormal rates of patient arrivals at an emergency department, and Camacho et al. (2016) relate PCA-based monitoring in

SPC to modern anomaly detection in statistical networks. PCA has also been studied in the setting of change detection in multivariate functional

data with the aim of detecting faulty profiles in a forging manufacturing process (Wang et al., 2018). Pimentel et al. (2014) provide an extensive

review of novelty detection techniques and applications, and it is pointed to PCA being very useful for detecting outliers in this setting, for a

large range of real world examples, covering industrial monitoring, video surveillance, text mining, sensor networks, and IT security. Moreover,

many authors (Huang et al., 2007; Lakhina et al., 2004; Pimentel et al., 2014) acknowledge that it is most often the residual subspace of PCA that

is most useful for outlier detection. On a similar note, Kuncheva and Faithfull (2014) offer an interesting alternative way to use PCA for change

detection problems.

Most PCA-based methods utilize PCA in the intended way of creating a model based on retaining a small number of the most varying

projections onto eigenvectors of the covariance matrix. As a consequence, the data are split into a model subspace that explains most of the

variance in the data and a residual subspace. It is not self-evident that this is the best way to use PCA as a dimension reduction tool for change

detection, so Kuncheva and Faithfull (2014) pose the question of which projections are the most sensitive to distributional changes in the data.

Sensitivity is measured by a statistical divergence between the marginal distributions of projections before and after a change. They give a brief

two-dimensional theoretical example that motivates monitoring the minor projections (the least varying projections) to detect anomalies that

manifest in the form of sustained changes in the distribution of the data. An important feature of such an approach is that it can potentially be

used to choose a subspace based on criteria linked to change detection, rather than on retaining data variance, hopefully yielding a better change

and anomaly detection methods. The goal of this article is to give a more complete treatment of and extend the bivariate problem of Kuncheva

and Faithfull (2014) in order to better understand the projections' sensitivity to changes under a simple setup and then study how these results

carry over to higher dimensions by simulations.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2019 The Authors. Stat published by John Wiley & Sons, Ltd.
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There are three main differences between our approach and the approach of Kuncheva and Faithfull (2014). First, we express the projections'

sensitivity to changes as functions of the parameters of the original data rather than of the parameters of the projections. The reason for this

choice is that the original data are the object of the main interest, whereas the projections are ancillary. Our approach allows one to change

individual parameters of the original data independently and see how this affects the marginal distributions of the projections as a consequence.

We argue that this is more informative. Second, we study a much larger space of possible changes, including changes in only one parameter at

a time. Such change scenarios where only a few of the dimensions change are called sparse changes, and they are the subject of much current

interest (Chan, 2017; Liu et al., 2017; Wang et al., 2018; Wang & Samworth, 2018; Xie & Siegmund, 2013). Third, we measure sensitivity by the

normal Hellinger distance between the marginal distributions of projections before and after a change, whereas Kuncheva and Faithfull (2014)

use the normal Bhattacharyya distance. See Section 2 for an explanation of this choice.

In short, we find the following. For bivariate data, we prove that if only one of the two components' means changes in any direction, one

component's variance increases, or the correlation between the components changes, the minor projection is the most sensitive. The principal

projection is the most sensitive if one of the components' variance decreases and the correlation is not too close to 1. Lastly, if both means

change, which projection is the most sensitive depends on the relative directions and sizes of change, and when both variances change by an

equal amount, both projections are equally sensitive. Thus, on average (with all change scenarios up to a certain size equally likely), the minor

projection is the most sensitive, mainly due to the sparse change scenarios. Our simulations confirm that the trend of the minor projections being

more sensitive on average also holds for higher dimensions. Moreover, and most importantly, the minor projections seem to be quite sensitive

even to very sparse changes. This knowledge carries large potential for creating more efficient change or anomaly detection methods.

The rest of the article is organized as follows: Section 2 formulates the problem precisely, Section 3 contains the theoretical results about

sensitivity to changes in two dimensions, and in Section 4, we explore sensitivity in higher dimensions by simulations. The proofs are found in

Appendix A.

2 PROBLEM FORMULATION

Consider independent observations xt ∈ RD, t = 1, … , n, and let 𝜅 ∈ {1, … , n − 1} be a change-point. For t ≤ 𝜅, the observations have mean

𝝁0 and covariance matrix Σ0, whereas for t > 𝜅, the data have mean 𝜇1 and covariance matrix Σ1. Assume without loss of generality that the

data are standardized with respect to the pre-change parameters, so that 𝝁0 = 0 and Σ0 is a correlation matrix with correlation parameter 𝜌. For

D = 2, the changed mean is given by 𝝁1 = (𝜇1, 𝜇2)t , and the changed covariance matrix can be expressed in terms of Σ0 and parameter-wise

multiplicative change factors as

Σ1 =

(
a2

11
a11a22a12𝜌

a11a22a12𝜌 a2
22

)
,

where

−1 < 𝜌, a12𝜌 < 1 and 𝜌 ≠ 0. (1)

For example, if a11 = 2, it means that the standard deviation of the first component has doubled compared with what it was originally in Σ0.

Similarly, a12 = 0.5 means that the correlation is half as strong after the change. Note that we exclude the degenerate cases of correlations equal

to −1 and 1.

Next, let {𝜆j, vj}D
j=1

be the normalized eigensystem of Σ0, ordered by 𝜆1 ≥ … ≥ 𝜆D . The orthogonal projections yj,t = vt
j
xt , with progressively

decreasing variances 𝜆j, are our main objects of interest.

The general problem is to find out which of the D projections are the most sensitive to different distributional changes defined by (𝝁1,Σ1), for

each pre-change correlation matrix Σ0. In the bivariate case, (Σ0,𝝁1,Σ1) is fully specified by (𝜌, 𝜇1, 𝜇2, a11, a12, a22). Note that a collection of the

most and least varying yj,t 's is referred to as the principal projections and minor projections, respectively.

We define sensitivity to changes as the normal Hellinger distance between the marginal distribution of a projection before and after a change.

The squared Hellinger distance between two normal distributions p(x) = N(x|𝜉1, 𝜎
2
1
) and q(x) = N(x|𝜉2, 𝜎

2
2
) is given by

H2(p, q) = 1 −

√
2𝜎1𝜎2

𝜎2
1
+ 𝜎2

2

exp

{
−1

4
(𝜉1 − 𝜉2)2

𝜎2
1
+ 𝜎2

2

}
.

The formal definition of sensitivity to changes is contained in Definition 1.

Definition 1. For j = 1, … ,D, let pj and qj denote the marginal pre- and post-change density functions of yj,t , respectively, given by

pj(y) = N(y | vT
j 𝜇𝟎, vT

j Σ0vj) = N(y|0, 𝜆j),

qj(y) = N(y | vT
j 𝜇𝟏, vT

j Σ1vj).

The sensitivity of the jth projection based on Σ0 to the change specified by (𝝁1,Σ1) is defined as H(pj, qj), abbreviated by Hj or Hj(Σ0,𝝁1,Σ1).54
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Our aim in the next section is to determine which pre-change parameters and changes the inequality H2 > H1 holds for when D = 2 in light of

Definition 1.

Remark

(i) Kuncheva and Faithfull (2014) also define sensitivity as a divergence between distributions before and after a change but use the

Bhattacharyya distance. The closely related Hellinger distance was chosen here because it turns out to be simpler to prove the sensitivity

propositions because of Lemma 1 (see Appendix A). It is also an advantageous feature of the Hellinger distance that it is a true metric

and takes values in [0,1]. That it is a true metric implies for instance that a change in variance from 1 to a > 1 is an equally large change

as from 1 to 1∕a for the normal distribution. We find this an appealing feature because it is also a property of the generalized likelihood

ratio test for a change in the mean and/or variance of normal data (see Hawkins & Zamba, 2005, for the corresponding test statistic).

(ii) One of the differences between our approach and the work of Kuncheva and Faithfull (2014) can now be stated more precisely. Our

aim is to study the sensitivity of the yj,t 's as functions of parameters of the original data xt . Kuncheva and Faithfull (2014), on the other

hand, study (additive) changes in the parameters of yt directly; for instance, 𝜆j changing to 𝜆j + a for all j, but without relating this a back

to which Σ1's this change corresponds to.

3 BIVARIATE RESULTS

This section contains all the bivariate results about sensitivity to changes. The detailed proofs are given in Appendix A.

For changes in the mean in two-dimensional data, Proposition 1 gives the condition for determining which projection is the most sensitive, as

well as the results for some special cases.

Proposition 1. Let a11 = a22 = a12 = 1 and 𝜇1, 𝜇2 ∈ R while not both being 0 simultaneously (only the mean changes). H2 > H1 if and only if

(𝜇1 − 𝜇2)2∕(𝜇1 + 𝜇2)2 > (1 − |𝜌|)∕(1 + |𝜌|).
In particular, for all |𝜌| ∈ (0,1),

1. H2 > H1 if one of 𝜇1 and 𝜇2 is 0 whereas the other is not (one mean changes).

2. H2 > H1 if 𝜇1 = −𝜇2 = 𝜇 ≠ 0 (equal changes in opposite directions).

3. H2 < H1 if 𝜇1 = 𝜇2 = 𝜇 ≠ 0 (equal changes in the same direction).

When both variances change by the same amount, Proposition 2 tells us that both projections are equally sensitive no matter what the

pre-change correlation or size of the change is.

Proposition 2. Let 𝜇1 = 𝜇2 = 0, a12 = 1 and a11 = a22 = a ≠ 1 (both variances change equally). For any |𝜌| ∈ (0,1) and a > 0, H2 = H1.

The picture becomes more complicated when only one variance changes (Proposition 3). If the variance increases, the minor projection is

always the most sensitive. On the other hand, if the variance decreases, the principal projection is mostly the most sensitive but not always if the

pre-change correlation is high (greater than
√

3∕2). In total, this gives a slight edge to the minor projection.

Proposition 3. Let 𝜇1 = 𝜇2 = 0, a12 = 1, and either a11 = 1 and a22 = a ≠ 1, or a11 = a and a22 = 1, where a > 0 (one variance changes).

1. For any |𝜌| ∈ (0,1) and a > 1 (variance increase), H2 > H1.

2. When |𝜌| ∈ (0,1) and a ∈ (0,1) (variance decrease), H2 < H1 in most cases. The only exception is if |𝜌| ∈ (
√

3∕2,1) and a ∈ (0,
√

4𝜌2 − 3),
where H2 > H1.

Finally, for a change in correlation, the minor projection is the most sensitive in most cases (Proposition 4). Only if the correlation changes

direction and becomes stronger is the principal projection more sensitive.

Proposition 4. Let 𝜇1 = 𝜇2 = 0, a11 = a22 = 1 and a12 = a ≠ 1 such that (1) holds (the correlation changes). Then H2 > H1 for any |𝜌| ∈ (0,1) and

a > −1.

4 EXPLORING HIGHER DIMENSIONS

In the two-dimensional case, we saw that which projection is the most sensitive depends both on the change (𝝁1,Σ1) and on the pre-change

correlation matrix Σ0. For a higher dimension D, solving inequalities like above for all the parameters in (Σ0,𝝁1,Σ1) quickly becomes tedious and

uninformative. Therefore, we use simulation to obtain Monte Carlo estimates E[Hj(Σ0,𝝁1,Σ1)] instead, where we vary which parameters that

change, the size of the changes, and the sparsity of the change (the number of dimensions that change). Let 𝜌i,d for i ≠ d denote the off-diagonal

elements of Σ0, 𝜇d be the dth element of 𝝁1, and 𝜎d be the dth diagonal element of Σ1. Then our simulation protocol to get such estimates is as

follows: 55
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FIGURE 1 A summary of the sensitivity results obtained by the simulation protocol for D = 20 for D = 100. (a) Monte Carlo estimates of E[Hj]
for uniformly drawn changes in the mean, variance, and (decreases in) correlation, as well as uniformly drawn pre-change correlation matrices
Σ0. (b) Same as (a), but now the average sensitivity is conditional on the sparsity of the change, rather than the type of parameter. (c) 0.05, 0.25,
0.75, and 0.95 percentiles (the dashed lines, from bottom to top) of the distribution of Hj, together with E[Hj] (solid line). Note that the
percentiles are over Σ0,𝝁1, and Σ1 simultaneously

1. Draw a correlation matrix Σ0 uniformly from the space of correlation matrices by the method of Joe (2006) (clusterGeneration::rcorrmatrix

in R).

2. Draw a change sparsity K ∼ Unif{2, … ,D}.

3. Draw a random subset  ⊆ {1, … ,D} of size K.

4. Draw an additive change in mean 𝜇 ∼ Unif(−3,3), and set 𝜇d = 𝜇 for d ∈ , whereas Σ1 = Σ0.

5. Draw a multiplicative change in standard deviation 𝜎 ∼ 1

2
Unif(1∕3,1) + 1

2
Unif(1,3) (equal probability of decrease and increase in standard

deviation) and set 𝜎d = 𝜎 for d ∈ , keeping the remaining parameters constant.

6. Draw a multiplicative change in correlation a ∼ Unif(0,1) and change 𝜌i,d to a𝜌i,d for all i ≠ d ∈ . The other parameters are kept constant.

7. For each of the three change scenarios 4–6, calculate Hj(Σ0,𝝁1,Σ1), j = 1, … ,D.

8. Repeat 2–7 103 times.

9. Repeat 1–8 103 times.

Averaging the simulated Hjs yields estimates of E[Hj], and we can condition on the type of parameter that changes and the change sparsity to

see what the sensitivity is expected to be for different classes of changes. (Note that we only consider decreases in correlation. This is to avoid

getting too many indefinite Σ1's. If indefinite Σ1's still occur, we find the closest positive-definite one by Higham's algorithm (Higham, 2002),

implemented in the Matrix::nearPD-function in R.

Figure 1 shows that the trend of the minor components being the most sensitive continues for D = 20 and D = 100. This holds for changes in

the mean, variance, and correlation (a) as well as all the different change sparsities (b). From the quantile plots (c), however, observe that a lot of

variation is hidden in these averages, meaning that which projection is the most sensitive will depend on the specific Σ0 and change (𝝁1,Σ1), as in

the bivariate case.

5 CONCLUDING REMARKS

We have presented bivariate theory demonstrating that the minor projection of PCA-rotated data is usually the most sensitive to changes,

especially if the change is sparse. Simulations confirm this to be the case on average for higher dimensions as well, but, in general, the sensitivity

strongly varies with the pre-change correlation matrix and the specific change.

In future work, we aim to exploit these insights for creating computationally efficient change detection methods for high-dimensional data.

The most promising and surprising part of our results is that even very sparse changes seem to be quite noticeable in the minor projections. This

is important for change detection in high-dimensional data because a change rarely affects all dimensions or parameters at once. Most often,

only a few parameters among many will change, and therefore, the problem of sparse changes will be the most relevant. One interpretation of56
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the results presented here is that for detecting sparse changes in the mean vector and/or covariance matrix of a high-dimensional data set or of

a sequentially arriving data stream, it is potentially sufficient to search for changes in a few selected minor projections. This might lead to major

improvements, not only computationally but also in terms of detection accuracy or speed. Choosing which minor projections to use for a specific

change detection problem is the subject of ongoing work.

This work is funded by the Norwegian Research Council centre Big Insight, Project 237718. The author would also like to thank Ingrid Glad

for useful input on the presentation of the material.

SUPPORTING INFORMATION AND DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available as part of the supporting information for this online article: R code .R file

with the code for reproducing (and easily extending) the simulation study and Figure 1.

ORCID

Martin Tveten https://orcid.org/0000-0002-4236-633X

REFERENCES

Camacho, J., Pérez-Villegas, A., García-Teodoro, P., & Maciá-Fernández, G. (2016). PCA-based multivariate statistical network monitoring for anomaly

detection. Computers & Security, 59, 118–137. https://doi.org/10.1016/j.cose.2016.02.008

Chan, H. P. (2017). Optimal sequential detection in multi-stream data. The Annals of Statistics, 45(6), 2736–2763. https://doi.org/10.1214/17-AOS1546

Harrou, F., Kadri, F., Chaabane, S., Tahon, C., & Sun, Y. (2015). Improved principal component analysis for anomaly detection: Application to an emergency

department. Computers & Industrial Engineering, 88, 63–77. https://doi.org/10.1016/j.cie.2015.06.020

Hawkins, D. M., & Zamba, K. D (2005). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2),

164–173. https://doi.org/10.1198/004017004000000644

Higham, N. J. (2002). Computing the nearest correlation matrix—A problem from finance. IMA Journal of Numerical Analysis, 22(3), 329–343. https://doi.

org/10.1093/imanum/22.3.329

Huang, L., Nguyen, X., Garofalakis, M., Jordan, M. I., Joseph, A., & Taft, N. (2007). In-network PCA and anomaly detection. In Schölkopf, B., Platt, J. C., &

Hoffman, T. (Eds.), Advances in Neural Information Processing Systems 19. MA, USA: MIT Press, pp. 617–624.

Jackson, J. E., & Morris, R. H. (1957). An application of multivariate quality control to photographic processing. Journal of the American Statistical Association,

52(278), 186–199.

Jackson, J. E., & Mudholkar, G. S. (1979). Control procedures for residuals associated with principal component analysis. Technometrics, 21(3), 341–349.

https://doi.org/10.1080/00401706.1979.10489779

Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of Multivariate Analysis, 97(10), 2177–2189. https://doi.org/

10.1016/j.jmva.2005.05.010

Ketelaere, B. D., Hubert, M., & Schmitt, E. (2015). Overview of PCA-based statistical process-monitoring methods for time-dependent, high-dimensional

data. Journal of Quality Technology, 47(4), 318–335. https://doi.org/10.1080/00224065.2015.11918137

Kuncheva, L. I., & Faithfull, W. J. (2014). PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data. IEEE transactions on neural

networks and learning systems, 25(1), 69–80. https://doi.org/10.1109/TNNLS.2013.2248094

Lakhina, A., Crovella, M., & Diot, C. (2004). Diagnosing network-wide traffic anomalies. In Proceedings of the 2004 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, ACM, New York, USA, pp. 219–230. https://doi.org/10.1145/1015467.1015492

Liu, K., Zhang, R., & Mei, Y. (2017). Scalable SUM-shrinkage schemes for distributed monitoring large-scale data streams. Statistica Sinica, 29, 1–22. https://

doi.org/10.5705/ss.202015.0316

Mishin, D., Brantner-Magee, K., Czako, F., & Szalay, A. S. (2014). Real time change point detection by incremental PCA in large scale sensor data. In 2014

IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. https://doi.org/10.1109/HPEC.2014.7040959

Pimentel, M. A. F., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty detection. Signal Processing, 99, 215–249. https://doi.org/10.

1016/j.sigpro.2013.12.026

Rato, T., Reis, M., Schmitt, E., Hubert, M., & De Ketelaere, B. (2016). A systematic comparison of PCA-based statistical process monitoring methods for

high-dimensional, time-dependent processes. AIChE Journal, 62(5), 1478–1493. https://doi.org/10.1002/aic.15062

Wang, Y., Mei, Y., & Paynabar, K. (2018). Thresholded multivariate principal component analysis for phase I multichannel profile monitoring. Technometrics,

60(3), 360–372. https://doi.org/10.1080/00401706.2017.1375993

Wang, T., & Samworth, R. J. (2018). High dimensional change point estimation via sparse projection. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 80(1), 57–83. https://doi.org/10.1111/rssb.12243

Xie, Y., & Siegmund, D. (2013). Sequential multi-sensor change-point detection. The Annals of Statistics, 41(2), 670–692. https://doi.org/10.1214/13-

AOS1094

57



6 of 9 TVETEN

How to cite this article: Tveten M. Which principal components are most sensitive in the change detection problem?. Stat. 2019;8:e252.

https://doi.org/10.1002/sta4.252

APPENDIX A: PROOFS

Before turning to the proofs of the propositions in Section 3, the expressions for the pre- and post-change means and variances of each

projection are needed. The normalized eigenvectors (principal axes) and corresponding eigenvalues (variance in the data along a given principal

axis) of Σ0 are quickly verified to be

𝜆1 = 1 + 𝜌, v1 = 1√
2

(
1
1

)
,

𝜆2 = 1 − 𝜌, v2 = 1√
2

(
−1
1

)
.

(A1)

Note that which principal axis is the dominant one depends on the sign of 𝜌. If 𝜌 is positive, v1 is the dominant one, but v2 is dominant if 𝜌 is

negative.

From the projections in (A1), the parameters of the projections before and after a change can be expressed as functions of the original correlation

matrix and multiplicative change factors. For the principal component, the original and changed variances become as follows, respectively:

o2
1 = 1 + 𝜌,

c2
1 = 1

2
a2

11 + 1
2

a2
22 + a11a22a12𝜌.

(A2)

The expressions for the variances of the minor component are identical up to one switched sign:

o2
2 = 1 − 𝜌,

c2
2 = 1

2
a2

11 + 1
2

a2
22 − a11a22a12𝜌.

(A3)

Observe that if 𝜌 < 0, then o2 and c2 would be equal to o1 and c1 with positive 𝜌, and vice versa. Thus, for 𝜌 ∈ (−1,1), the general expressions

are obtained by replacing 𝜌 with |𝜌|. Lastly, the changed mean components are given by

m1 = 1√
2
(𝜇1 + 𝜇2),

m2 = 1√
2
(𝜇1 − 𝜇2).

(A4)

We first prove Proposition 1 for changes in the mean.

Proof of Proposition 1. Let p1(x) = N(x | 0, o2
1
), q1(x) = N(x | m1, o2

1
), p2(x) = N(x | 0, o2

2
), and q2(x) = N(x | m2, o2

2
), where mi, oi

are as in (A2), (A3), and (A4), with 𝜌 replaced by |𝜌| as noted above. The Hellinger distances between the distributions before and after a

change along each principal axis are given by for j = 1,2

H2
j = H2(pj, qj) = 1 − exp

{
− 1

8o2
j

m2
j

}
.

Then some algebra results in the inequality we needed to prove:

H2 > H1

1
8(1 − |𝜌|) (𝜇1 − 𝜇2)2

2
>

1
8(1 + |𝜌|) (𝜇1 + 𝜇2)2

2

(𝜇1 − 𝜇2)2

(𝜇1 + 𝜇2)2
>

1 − |𝜌|
1 + |𝜌|

From this inequality, the three special cases (i), (ii), and (iii) are immediately given.

In the proofs concerning changes in the covariance matrix, we will make use of the following lemma. It reduces the inequality of Hellinger

distances to a simpler inequality of ratios of variances.58
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Lemma 1. Let p1, q1, p2, q2 be 0-mean normal distribution functions with variances 𝜎2
p1
, 𝜎2

q1
, 𝜎2

p2
, and 𝜎2

q2
, respectively. Furthermore, let

log rj =
||||||log

𝜎2
qj

𝜎2
pj

|||||| , j = 1,2.

Then H(p2, q2) > H(p1, q1) if and only if logr2 > logr1.

Proof. First observe that when the means are 0, then we can write the Hellinger distance between two normal distributions as the following.

H2(p, q) = 1 −

(
2𝜎p𝜎q

𝜎2
p + 𝜎2

q

)1∕2

= 1 −
√

2

(
𝜎p

𝜎q
+

𝜎q

𝜎p

)−1∕2

= 1 −
√

2

(
𝜎2

p

𝜎2
q

+
𝜎2

q

𝜎2
p

+ 2

)−1∕4

.

This gives us the inequality

H(p2, q2) > H(p1, q1)

𝜎2
p2

𝜎2
q2

+
𝜎2

q2

𝜎2
p2

>
𝜎2

p1

𝜎2
q1

+
𝜎2

q1

𝜎2
p1

.

By setting r2 = 𝜎2
p2
∕𝜎2

q2
and r1 = 𝜎2

p1
∕𝜎2

q1
, the inequality can be written as

r2 + r−1
2 > r1 + r−1

1 .

Now assume first that r1, r2 > 1, that is, 𝜎2
pj
> 𝜎2

qj
. Then we see that

r2 + r−1
2 > r1 + r−1

1

r2 − r1 + r1 − r2

r1r2
> 0

(r2 − r1)
(

1 − 1
r1r2

)
> 0.

By the assumption that r1, r2 > 1, this inequality holds if and only if r2 > r1.

Finally, note that by interchanging 𝜎2
pj

and 𝜎2
qj

, the same result is obtained when 𝜎2
qj
≥ 𝜎2

pj
. Thus, to make the result hold in general, we can set

rj = exp

{||||||log
𝜎2

qj

𝜎2
pj

||||||
}

, j = 1,2,

which is an expression for the ratio between variances where the largest of the variances is always in the numerator. Therefore, we get that

log r2 > log r1 is equivalent to H2 > H1.

The rest of this article contains the individual proofs of the remaining propositions in the main body of the text.

Proof of Proposition 2. Let logrj for j = 1,2 be defined as in Lemma 1. When assuming that a12 = 1 and a11 = a22 = a ≠ 1, we get that

log r2 =
|||||log

a2∕2 + a2∕2 − |𝜌|a2

1 − |𝜌| ||||| = | log a2|,
and

log r1 =
|||||log

a2∕2 + a2∕2 + |𝜌|a2

1 + |𝜌| ||||| = | log a2|.
Hence, by arguments along the lines of the proof of Lemma 1, we see that H2 = H1 no matter what |𝜌| or a is.
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Proof of Proposition 3. Using the formulas for the variances of the projections (A2) and (A3), the inequality we have to study according to

Lemma 1 becomes the following: |||||log
a2 − 2a|𝜌| + 1

2(1 − |𝜌|) ||||| >
|||||log

a2 + 2a|𝜌| + 1
2(1 + |𝜌|) ||||||||||log

[
(1 − a)2

2(1 − |𝜌|) + a
]||||| >

|||||log

[
(1 − a)2

2(1 + |𝜌|) + a
]||||| .

(A5)

First, we have to find the sign of the expressions inside the absolute values for each a and |𝜌|. For the left-hand side, we get

(1 − a)2

2(1 − |𝜌|) + a = 1

a = 1 and a = 2|𝜌| − 1.

Thus, for a > 1 and a < 2|𝜌| − 1, the left-hand side is positive, whereas negative in between. For the right-hand side, the expression inside

the absolute value signs are positive for a > 1 and a < −(1 + 2|𝜌|). Because a > 0, however, the relevant root for the right-hand side is only

a = 1. In total, this gives us three regions of (a, |𝜌|)-values to check inequality (A5): a > 1 and |𝜌| ∈ (0,1), a ∈ (2|𝜌|− 1,1) and |𝜌| ∈ (0,1), and

a ∈ (0,2|𝜌| − 1) and |𝜌| ∈ (1∕2,1).

a > 1 and |𝜌| ∈ (0,1):
The absolute value signs can now be dissolved, so that inequality (A5) becomes

(1 − a)2

(1 − |𝜌|) >
(1 − a)2

(1 + |𝜌|) .
Because |𝜌| ∈ (0,1), we see that the inequality holds for any a > 1. Hence, H2 > H1 in this scenario, when the variance increases.

a ∈ (2|𝜌| − 1,1) and |𝜌| ∈ (0,1):
In this case, inequality (A5) becomes

(1 − a)2

(1 − |𝜌|) <
(1 − a)2

(1 + |𝜌|) .
That is, it does not hold for any of the a's or |𝜌|'s within the relevant region. Note that when |𝜌| < 1∕2, a is kept between (0,1).

a ∈ (0,2|𝜌| − 1) and |𝜌| ∈ (1∕2,1):
Now we get the inequality

(1 − a)2

2(1 − |𝜌|) + a >

(
(1 − a)2

2(1 + |𝜌|) + a
)−1

,

which is equivalent to

a4 − a2(4𝜌2 − 2) + 4𝜌2 − 3 > 0. (A6)

The roots of the function on the left-hand side are a = ±1 and a = ±
√

4𝜌2 − 3, but the only relevant root for a ∈ (0,2|𝜌|−1) and |𝜌| ∈ (1∕2,1)
is a0 ∶=

√
4𝜌2 − 3.

Next, for |𝜌| < √
3∕2, the root a0 moves into the complex plane, and the function on the left-hand side of (A6) is always less than 0 for

the relevant a's. That is, H2 < H1 in this case. If |𝜌| > √
3∕2, on the other hand, then (A6) holds for a ∈ (0, a0), but not for a ∈ (a0,2|𝜌| − 1).

Proof of Proposition 4. In this scenario, the inequality to check due to Lemma 1 and expressions (A2) and (A3) is

||||log
1 − a|𝜌|
1 − |𝜌| |||| > ||||log

1 + a|𝜌|
1 + |𝜌| |||| . (A7)

To dissolve the absolute value signs, we first have to see for which values of a and |𝜌| the expressions inside are positive or negative. It is

easily verified that the expression inside the left-hand side absolute value is positive for a < 1, whereas the right-hand side is positive if

a > 1, both being negative otherwise.

First assume that a < 1. Then inequality (A7) becomes

1 − a|𝜌|
1 − |𝜌| >

1 + |𝜌|
1 + a|𝜌|

1 − (a𝜌)2 > 1 − 𝜌2

a2 < 1.60
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Hence, a ∈ (−1,1) yields H2 > H1. On the other hand, if a > 1, we obtain

1 − |𝜌|
1 − a|𝜌| > 1 + a|𝜌|

1 + |𝜌|
a2 > 1,

which is always true. Thus, in total, H2 < H1 only if a < −1.
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Projections

Martin Tveten and Ingrid K. Glad,
Department of Mathematics, University of Oslo
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Abstract

When applying principal component analysis (PCA) for dimension reduction, the most
varying projections are usually used in order to retain most of the information. For the
purpose of anomaly and change detection, however, the least varying projections are often
the most important ones. In this article, we present a novel method that automatically
tailors the choice of projections to monitor for sparse changes in the mean and/or covariance
matrix of high-dimensional data. A subset of the least varying projections is almost always
selected based on a criteria of the projection’s sensitivity to changes.

Our focus is on online/sequential change detection, where the aim is to detect changes
as quickly as possible, while controlling false alarms at a specified level. A combination of
tailored PCA and a generalized log-likelihood monitoring procedure displays high efficiency
in detecting even very sparse changes in the mean, variance and correlation. We demon-
strate on real data that tailored PCA monitoring is efficient for sparse change detection also
when the data streams are highly auto-correlated and non-normal. Notably, error control is
achieved without a large validation set, which is needed in most existing methods.

Keywords: Statistical Process Control (SPC), Principal Component Analysis, Anomaly De-
tection, Change-point Detection, Bootstrap/Resampling.
R packages: tpca, tpcaMonitoring and tdpcaTEP are available from https://github.com/Tveten.
The packages include all code to easily reproduce our results.

Additional supplementary materials are available online (see the list at the end of the article).
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1. INTRODUCTION
1.1 Motivation
The exploding availability of cheap sensors has created a need for new methods to harvest
insight from them. In many applications, these sensors are deployed in large networks for online
monitoring of a system. Concrete examples include temperature monitoring of a data center at
Johns Hopkins (Mishin et al. 2014), plant-wide monitoring of industrial processes (Ge 2017) and
semiconductor manufacturing (Zou et al. 2014). Similar technology is also used within video
segmentation (Kuncheva and Faithfull 2014), solar flare detection (Liu et al. 2015), medical
monitoring, DNA protein sequence analysis, network intrusion detection and speech recognition.
Our own motivation comes from condition monitoring of ships, where around 100-500 sensors
are placed to measure the ship’s state in terms of propulsion, temperatures, pressure and other
physical quantities.

For many applications, there is a need for quick detection of anomalies that arise in the form
of sustained changes in the data distribution. E.g., the pressure in a valve is too high, which
should be attended to as quickly as possible, or a small number of sensors suddenly becomes
faulty. This illustrates that changes may (and perhaps most often) only occur in a small subset
of the sensors in an entire network. Thus, lately, several authors (see Section 1.4) have worked on
the problem of change detection from the angle of only a small, unknown set of affected sensors,
or so-called sparse changes. Mostly, they focus on changes in the mean of independent normal
data, or assume all parameters in the model to be known, both before and after a change.

However, in some applications (Hawkins and Zamba 2009; Woodall and Montgomery 2014;
Kuncheva and Faithfull 2014), sparse changes both in the mean and in the covariance matrix of
the sensors are of interest. For instance, if a certain level of stability in a process is required,
or because one has learned from historical data or experts that a group of sensors should be
correlated in a specific way. Additonally, parameters are unknown in most cases and must be
estimated. If estimation uncertainty is not accounted for, many false alarms will be raised, which
is highly undesirable. The problem we address in this article is therefore sequential detection
of sparse changes in the mean and/or covariance structure of high-dimensional data streams,
with all parameters unknown. To make the method scalable, principal component analysis is
incorporated and studied within this change detection framework.

1.2 Problem Formulation
Imagine a system being monitored by D sensors at times indexed by t, yielding a multivariate
data stream of observations xt ∈ RD. First, there is a training period where m observations
x−m+1, . . . ,x0 of the system under normal conditions are generated. From t ≥ 1 the data
stream xt is monitored online or sequentially for a change in its joint distribution. The change
is thought of as being a consequence of an anomaly in the system. Importantly, the anomaly
might be local, and therefore only affect a small number of sensors. The aim is to detect these
anomalies as soon as possible, but false alarms should be kept at a controlled level.

For simplicity, our modelling assumptions are mainly as follows, but extensions to handle
time-dependency and non-normality are presented and tested in Section 5. First, there is a
training period where m independent N(µ0,Σ0) observations xt are gathered. As monitoring
ensues, observations keep arriving from the null distribution until a change-point κ ≥ 0, after
which the distribution of xt changes to N(µ1,Σ1) for all t > κ. A key element is the assump-
tion that only a subset D ⊆ {1, . . . , D} of the sensors are affected by a change, following the
perspective of Xie and Siegmund (2013). The subset of affected streams is defined by

D = {d : µ0,d 6= µ1,d or (Σ0)d,∗ 6= (Σ1)d,∗}, (1)

where (A)d,∗ denotes the d-th row of a matrix. In other words, we assume that the change in
mean vector µ1−µ0 and/or change in covariance matrix Σ1−Σ0 has a sparsity structure. This
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sparse online change-point problem is summarized by the following sequential hypothesis test:

H0 : xt ∼ N(µ0,Σ0), t = −m+ 1,−m+ 2 . . .

H1 : There is a κ ≥ 0 such that
xt ∼ N(µ0,Σ0), t = −m+ 1, . . . , κ

xt ∼ N(µ1,Σ1), t = κ+ 1, κ+ 2, . . . ,

(2)

where only parameters for d ∈ D change, and κ, D, µ0, Σ0, µ1 and Σ1 are all unknown. Our
primary interest is the high-dimensional, sparse problem, where D is high and |D| is relatively
small. Ultimately, we end up with a stopping rule for (2) of the form

T = inf{t : Λt ≥ b}, (3)

where Λt is a running test statistic of all observations, including the training set.
Note that the assumption of independence in time is less restrictive than one may think.

Rather than thinking of xt as the raw observations, they can be thought of as residuals from
a spatio-temporal model, learned in advance. The monitoring procedure then raises an alarm
when the spatio-temporal model does not explain the incomming data well anymore.

To describe how the stopping rules T are evaluated, let Pκ and Eκ denote probability and
expectation when there is a true change-point at κ. In particular, P∞ and E∞ mean probability
and expectation under H0. For a chosen monitoring length n, we control the probability of false
alarms (PFA) at a given level,

P∞(T ≤ n) ≤ α. (4)

(This measure of false alarms compared to the more common average run length (ARL) is
discussed in Section 3.) Then, if a change actually occurs at κ, the aim is to detect it as quickly
as possible, measured by the (conditional) expected detection delay (EDD),

Eκ[T − κ|T > κ]. (5)

The EDD is the expected sample size to detect a given change. The lower it is, the better.
If one disregards the sparsity of the change, a solution to the problem (2) can be ob-

tained through relatively straightforward generalized likelihood ratio methodolgy (Sullivan and
Woodall 2000; Hawkins and Zamba 2009). However, these methods are not efficient in the
high-dimensional and sparse change setting for several reasons. Firstly, they do not incorporate
prior information about the sparsity of a change, yielding slow detection. Secondly, they scale
poorly with D in terms of detection speed. To see this, let t denote the current time, k < t be
a candidate change-point, so that t − k is the number of observations used in estimating Σ1.
Then t− k > D for a non-degenerate maximum likelihood estimate. This means that the most
recent candidate change-point k will grow further apart from the current time t as D grows,
resulting in very slow detection. Even if one uses regularization techniques to circumvent a
singular maximum likelihood estimate, there would still be a need of an increasing amount of
observations for a reliable estimate. Thirdly, they are not scalable computationally as D grows
because of the burden of computing many increasingly larger covariance matrices.

Dimension reduction tools are often employed to overcome high-dimensional challenges, but
they have not been studied much in the online change-point detection context. Therefore, our
main objective in this work is to take a common and well understood dimension reduction tool,
principal component analysis (PCA), use knowledge about how it reacts to (sparse) changes in
the mean and covariance matrix, and come up with an efficient way to use it for online change
detection.

Our strategy for solving the change-point problem (2) with tailored PCA is as follows:

1. Obtain the sample principal axes v̂j , j = 1, . . . , D, from the training set x−m+1, . . . ,x0.
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(The sample principal axes are the eigenvectors of the sample covariance matrix Σ̂0.)

2. Figure out which of the projections onto sample principal axes that are most sensitive to a
given set of relevant or possible changes. Pick the J most sensitive and disregard the rest.

3. For t > 0, monitor the mean and variance of the projections yj,t = v̂
ᵀ
jxt, j = 1, . . . , J . In

this way, the problem of detecting changes in the entire covariance matrix is reduced to
detecting changes in marginal variances.

This procedure is first studied within the modelling and evaluation framework described above
to get some understanding under a clean setup, before an extension to more realistic data is
proposed in Section 5.

Point (2) above is the main focus of Sections 2, while point (3) together with false alarm
control is handled in Section 3. Empirical results from simulation studies are presented in Section
4. Lastly, in Section 5, our method is extended to tackle non-normal and time-dependent data,
and benchmarked on the Tennessee Eastman process.

1.3 Main Contributions
There are two main contributions of this work:

1. A principled approach to automatically choosing which principal axes to keep for a specific
change detection task, readily implemented in an R package. This was an open problem
posed by Kuncheva and Faithfull (2014).

2. An online monitoring scheme that extends the scheme of Xie and Siegmund (2013) for
sparse, positive changes in the mean of independent data, to detection of sparse changes
in the mean and/or covariance matrix of time-dependent data. Our scheme is scalable,
and includes all sources of estimation uncertainty when finding a threshold that meets a
specified probability of false alarms, without the need of a large validation set.

Expanding on Kuncheva and Faithfull (2014) and Tveten (2019), we find that a subset of the
least varying projections tend to be selected for a wide range of change scenarios and pre-change
covariance matrices. We also conclude that monitoring the projections yjt offer a solution to
all the discussed shortcomings of a direct approach; quicker detection and computation can be
attained because there are less parameters to estimate online, and information about change
sparsity can be incorporated in our method for choosing projections.

1.4 Connections with Prior Work
The work in this article intersects with many fields, including anomaly and novelty detection
in the machine learning world, statistical offline and online change/change-point detection, and
statistical process control (SPC).

As the previous section suggests, the work in this article is mainly inspired by Xie and Sieg-
mund (2013), Kuncheva and Faithfull (2014) and Tveten (2019). We follow Xie and Siegmund
(2013) approximately in formulating the change-point problem. The difference is that they are
interested in the case where the variance is known and constant, there is no correlation between
the streams, and only positive changes in the mean are of interest.

On the other hand, Kuncheva and Faithfull (2014) motivated the use and study of PCA
for our problem by arguing that the least varying projections were the most useful through a
bivariate example. Tveten (2019) elaborate and, sometimes, correct their picture by letting the
answer depend on the pre-change covariance matrix and a more comprehensive list of possible
change scenarios. In contrast to Kuncheva and Faithfull (2014), Tveten (2019) traces changes
that occur in the distribution of xt through the projection, and see how the distribution of the
projections yj,t changes as a result. We build on this to develop the general method for choosing
projections to monitor online for changes presented here.
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The problem of sequential detection of sparse changes has recieved much recent interest
beyond Xie and Siegmund (2013), which we have drawn upon in some way or another. Most
of the research in this direction, however, is either concerned with changes in the mean of
independent normals (or a known covariance matrix) (Zou et al. 2014; Wang and Mei 2015;
Chan 2017), or assumes that both the pre- and post-change distributions are known (Mei 2010;
Banerjee and Veeravalli 2015; Fellouris and Sokolov 2016). The work of Mei et al. (2017) is
interesting and relevant in that no assumptions on the distributions are made, but it is not a
fully multivariate approach.

Our motivation for the choice of performance metrics comes from discussions by Lai (1995)
and Lai and Xing (2010). These works also study generalized likelihood ratio approaches where
parameters have to be estimated, discuss window lengths as well as obtaining thresholds by
bootstrapping. All of which is relevant to the present article.

All of the mentioned articles fall in a tradition that was initiated by Page (1955) and later
expanded by Lorden (1971) and Moustakides (1986). The significant contribution of Siegmund
(1985) should also be mentioned.

There is also a connection from our work to Kirch and Tadjuidje Kamgaing (2015) and Dette
and Gösmann (2018), who study online change-point detection within a more recently developed
theoretical framework. They consider monitoring statistics that incorporate a training set, and
control the probability of false alarms under the asymptotic scheme of the number of training
samples going to infinity. Their setup is very general, and contains much less rigid assumptions
than the works we have mentioned so far, but does not consider sparse changes explicitly.
Moreover, we control false alarms for a finite number of training samples.

Relevant litterature also exists within stochastic process control. Hawkins and Zamba (2009)
and Sullivan and Woodall (2000) consider the same change-point problem as in this paper, but
without incorporating an assumption about the sparsity of a change. Chan and Zhang (2001)
also study the detection of changes in the mean and/or covariance matrix by the use of projection
pursuit as a dimension reduction tool, rather than PCA, but assume the pre-change parameters
to be known. Additionally, there are plenty of control charts based on PCA (see for example
the reviews Weese et al. (2015) and Rato et al. (2016)). These are, however, not set within
the online change-point detection framework of controlling the false alarm rate and measuring
detection delays, and they only handle sparse changes implicitly.

Within the realm of anomaly detection in machine learning, PCA has been used in numerous
ways. The work in Qahtan et al. (2015) is closely related to Kuncheva and Faithfull (2014), but
they use PCA in the standard way where only the most varying projections are selected. Lakhina
et al. (2004) and Huang et al. (2007) use PCA to detect anomalies in (traffic) networks, and, like
us, they find that it is the residual subspace of PCA that is most useful. This fact is also pointed
to in the extensive review of novelty detection techniques and applications in Pimentel et al.
(2014). A difference from these works to us is that what they consider as anomalies are outliers
in a trained model, not changes in distribution. And, most importantly, we do not use the entire
residual subspace, but rather the subspace of it that is most sensitive to a user-defined set of
relevant distributional changes. Other examples of PCA-based anomaly detection procedures
are Ferrer (2007), Mishin et al. (2014) and Harrou et al. (2015). None of the articles mentioned
in this paragraph considers the speed of detection, which is a major difference to our objective.

2. TAILORING THE CHOICE OF PRINCIPAL AXES TO CHANGE DETECTION
In this section, the insights from Tveten (2019) about the sensitivity of projections to various
changes and the dependence on the pre-change covariance matrix are knit together into an
algorithm that decides which projections to use for a given change-point problem. Such an
automatic choice of projections is what we mean by tailoring PCA for change detection. In the
next section we test it in the online change detection setting.

What do we mean by sensitivity to changes? Akin to Kuncheva and Faithfull (2014) and
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Tveten (2019), we define it by a divergence between the marginal distribution of each projection
before and after a change. Here we follow Tveten (2019), who use the Hellinger distance. The
squared Hellinger distance between two normal distributions p(x) = N(x|ξ1, σ1) and q(x) =
N(x|ξ2, σ2) is given by

H2(p, q) = 1−
√

2σ1σ2
σ21 + σ22

exp

{
−1

4

(ξ1 − ξ2)2
σ21 + σ22

}
.

A desirable feature of the Hellinger distance between two normals is that it is symmetric with
respect to whether the variance increases or decreases in the sense that a multiplicative increase
of the variance by a factor a ≥ 1 changes the distribution as much as a decrease by the factor
1/a. This is also a property of the generalized likelihood ratio procedure for detecting changes
in the mean and/or variance we use for monitoring later. There could be reasons for using other
divergences, however, so in the accompanying R package, any divergence can be specified. Our
own experiments suggest that the overall conclusions will not be significantly different by using
for example the KL-divergence or Bhattacharyya distance.

Formally, the definition of sensitivity to changes we use, as defined in Tveten (2019), is as
follows. Recall that µ0 and Σ0 are the pre-change mean and covariance matrix of xt, while
µ1 and Σ1 are the post-change parameters. Without loss of generality, assume that xt is
standardized with respect to the pre-change parameters, so that µ0 = 0 and Σ0 is a correlation
matrix. Next, let {λj ,vj}Dj=1 be the normalized eigensystem of Σ0, where it has been sorted
such that λ1 ≥ ... ≥ λD. Then the orthogonal projections onto the pre-change principal axes
are given by yj,t = v

ᵀ
jxt, for j = 1, . . . , D. Assuming xt is multivariate normal, yj,t has marginal

pre- and post-change density functions

pj(y) = N(y| vᵀ
jµ0,v

ᵀ
jΣ0vj) = N(y| 0, λj)

qj(y) = N(y| vᵀ
jµ1,v

ᵀ
jΣ1vj),

(6)

respectively. Given a correlation matrix Σ0, the sensitivity of the j’th projection to the change
specified by (µ1,Σ1) is defined as H(pj , qj), abbreviated by Hj . Importantly, note that the
sensitivity as defined here is a function of the pre- and post-change parameters of the original
data xt: Σ0, µ1 and Σ1.

Using this definition of sensitivity, Tveten (2019) proved that for bivariate normal data, the
least varying projection is the most sensitive if one of the means change, one of the variances
increases, or the correlation changes. If one variance decrease, then the most varying projection
is the most sensitive unless the pre-change correlation is larger than

√
3/2 ≈ 0.87, On the

other hand, when both means or both variances change, there are no clear winner among the
projections. Thus, we hypothesize that the least varying projections are particularly useful if
changes have some sparsity structure, which they almost always are in the high-dimensional
setting. The general take-away, however, is that which projections are most sensitive depends
on the pre-change correlation matrix and the exact nature of the change.

The tailored PCA (TPCA) method is motivated from the bivariate results. In short, the
procedure is as follows. First, an estimate of the pre-change correlation matrix, Σ̂0, must
be obtained from a training set. Then simulate B changes from a customizable change dis-
tribution p(µ1,Σ1|Σ̂0), measure each projection’s sensitivity to each change, (H1, . . . ,HD)(b),
b = 1, . . . , B, and summarize the sensitivity in a way that yields a meaningful ranking of the
principal axes/projections. A selection of projections can then be made from the ranking.

In principle, any distribution for p(µ1,Σ1|Σ̂0) could be used, but the space of all possible
combinations of changes is extremely vast. Therefore, we make some restrictions to simplify the
space of changes. First, we restrict ourselves to consider only one change type at a time. The
change type can then be seen as a single-trial multinomially distributed random variable C with
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probabilities pµ (mean), pσ (variance) and pρ (correlation). Secondly, letK = |D| ∈ {1, 2, . . . , D}
be the change sparsity, where D is defined as in (1), which indicates how many dimensions that
are affected by a change. I.e., the number of non-zero elements in µ1 − µ0 and σ1 − σ0, where
σ is the diagonal of Σ. For a change in correlation, a change sparsity of K means that all the
correlations between the K affected dimensions change. Thirdly, given a change sparsity K, we
assume throughout that the exact subset of affected streams D is uniformly distributed over all
combinations of size K. Fourthly, there is the change size of each type of change:

• µd ∈ R is the size of an additive change in the mean in the d’th component for d ∈ D.

• σd ∈ R>0 is the size of a multiplicative change in the standard deviation in the d’th
component for d ∈ D.

• adi such that adiρdi ∈ [0, 1) for d 6= i ∈ D is the size of a multiplicative change in each
pre-change correlation. (Not all changes of this element-wise sort will result in a positive
definite correlation matrix. See the supplementary material for how we deal with this.)

Note that for practical purposes it is reasonable to restrict the domain of the change sizes to
sizes that are actually relevant, but the above outlines the theoretical scope of the post-change
parameter subspace we consider.

A change distribution p(µ1,Σ1|Σ0) can now be characterized by a distribution over the
parameters (C,K,D, µd, σd, adi). Due to space limitations, we will only show results for a
change distribution that represents very little prior information about the nature of a change.
The two minor exceptions are that we assume interest is restricted to change sparsities K ≤ D/2
and that the correlation can only decrease. This change distribution is given by

C ∼ Multinom(pµ = 1/3, pσ = 1/3, pρ = 1/3)

K ∼ Unif{1, . . . , D/2}
D|K ∼ Unif{D ⊆ {1, . . . , D} : |D| = K}

µd|D,C iid∼ Unif[−1.5, 1.5], d ∈ D

σd|D,C iid∼ 1

2
Unif[1/2.5, 1] +

1

2
Unif[1, 2.5], d ∈ D

adi|D,C iid∼ Unif[0, 1], d 6= i ∈ D.

(7)

The supplementary material contains simulations that show that the exhibited results are fairly
robust to the choice of change distribution. In the accompanying R-package tpca, one can easily
set up uniform change distributions as in 7 over other sets of change scenarios.

By using change distribution (7) and a randomly generated 20-dimensional pre-change cor-
relation matrix, Figure 1 illustrates that the least varying projections are the most sensitive on
average, but that notable variation is hidden on the level of the exact nature of a change. To
capture this variation, our idea is to estimate how often projection j is the most sensitive one for
a given correlation matrix, and use this to rank the projections. That is, we want to estimate

Pj := P

(
argmax
i∈{1,...,D}

H(pi, qi) = j
∣∣∣ Σ0

)
, for j = 1, . . . , D. (8)

In this way, the probability of omitting a projection that is maximally sensitive to a particular
change can be controlled.

To automate the choice of a projections, a cutoff value c ∈ [0, 1] can be selected such that
the projections with the highest probability of being the most sensitive are picked until the sum
of probabilities is greater than c. Then 1 − c corresponds to the probability of not picking a
projection that is maximally sensitive to a change. Figure 2 displays the estimated probabilities
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Figure 1. (a) and (b) display Monte Carlo estimates of E[Hj |Σ0], j = 1, . . . , 20 for a
randomly generated Σ0, with respect to the change distribution (7). (a) show results
conditional on change type and (b) on change sparsity. 104 Monte Carlo samples were used.
Note that j = 1 and j = 20 are the most and least varying projections, respectively. (c)
displays Hj for one randomly selected change in each class of change type, to illustrate what
each outcome that is averaged over to obtain (a) and (b) looks like.

P̂j corresponding to the same simulations as in Figure 1. Observe that even for c close to 1, only
a few of the least varying projections would be selected for all change types. However, more axes
would be selected for general changes and changes in the mean than for changes in the variance
or correlation. Consult the supplementary material for more simulations regarding which axes
that are selected.

Figure 2. Monte Carlo estimates of Pj with respect to the same Σ0 as in Figure 1 and same
draws from change distribution (7). The three right-most figures show the contributions to the
overall probabilities (left) for each change type.

To summarize, Algorithm 1 describes the tailoring procedure in detail. We call it the TPCA
algorithm, and it is implemented in the R package tpca. For online monitoring of data streams,
it is intended as a final step in the training phase. In the training phase, an estimate Σ̂0 of
the pre-change correlation matrix is obtained, a change distribution p(µ1,Σ1|Σ̂0) is set up to
represent the changes of interest, and a cutoff c is chosen. Then the tailoring algorithm is run to
determine which principal axes J ∈ {1, . . . , D} to project the incomming data onto. Ultimately,
monitoring of v̂

ᵀ
jxt, j ∈ J ensues, which we deal with next.
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Algorithm 1 Tailored PCA (TPCA) for Change Detection

Input: Σ0, p(µ1,Σ1|Σ0), c, B
1: Compute (sorted) eigenvalues and eigenvectors {λj ,vj}Dj=1 of Σ0

2: for b ∈ {1, . . . , B} do
3: (µ1,Σ1)

(b) ∼ p(µ1,Σ1|Σ0)

4: (H
(b)
1 , . . . ,H

(b)
D )← (H(p1, q

(b)
1 ), . . . ,H(pD, q

(b)
D ) . pj and qj are given in (6).

5: end for

6: P̂j ←
1

B

B∑

b=1

I

{
argmax
i∈{1,...,D}

H
(b)
i = j

}

7: J ← {j :
∑

i∈J P̂i ≥ c such that |J | is minimal}.
Return: J and {λj ,vj}j∈J

3. ONLINE MONITORING
In this section, focus is shifted back to the sparse online change-point problem (2). First, the
monitoring statistic we will use for performance analysis is presented, before we turn to handling
the uncertainty stemming from estimating the eigensystem. We have chosen a monitoring statis-
tic that can be set up to handle sparse changes in the mean and/or variance vectors directly
in the original data xt as well as indirectly in the projections. In this way, we obtain a fair
benchmark for the TPCA method, both in terms of detection speed and dimension reduction
capabilities. What the monitoring statistic can not do when applied directly to the original data
is to detect changes in the cross-stream correlations of xt. We view this ability as an advan-
tage of PCA-based procedures. Whether such an ability is important or not depends on the
application.

3.1 A Mixture Procedure for Detecting Changes in the Mean and/or Variance
Our monitoring statistic generalizes the mixture generalized likelihood ratio (GLR) detection
procedure of Xie and Siegmund (2013) from only detecting positive mean shifts to detecting all
changes in the mean and/or variance. The key component in their mixture procedure is the
incorporation of a prior guess about the sparsity of the change. As before, we assume there is
a training set of size m with observations from the null distribution available, and that only an
unknown proportion p = |D|/D of the streams are affected by a change. The mixture procedure
arises from the following hypothesis testing setup:

H0 : xt ∼ N
(
µ0, diag{σ2

0}
)
, t = −m+ 1,−m+ 2 . . .

H1 : There is a κ ≥ 0 such that

xt ∼ N
(
µ0, diag{σ2

0}
)
, t = −m+ 1, . . . , κ

xt ∼ N
(
µ1, diag{σ2

1}
)
, t = κ+ 1, κ+ 2, . . . ,

(9)

where µ0,d 6= µ1,d and/or σ20,d 6= σ21,d only for d ∈ D ⊆ {1, . . . , D}. The key component in the
mixture procedure of Xie and Siegmund (2013) is to substitute the unknown p with a prior guess
p0, which acts as the probability that each stream n belongs to the class of affected streams or
not. Note that it is assumed that changes occur in the mean and/or variance simultaneously,
and then persist for all t > κ.

The mixture log-likelihood ratio statistic for a change in the mean and/or variance is derived
in the following. With an assumed change-point at κ = k ≥ 0 the global log-likelihood ratio is
on the form

Λk,t(p0) =
D∑

d=1

log [1− p0 + p0 exp {`d,k,t}] , (10)
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where `d,k,t is the maximized likelihood ratio statistic for each stream d. So with probability
1− p0 all observations in stream d are assumed to come from the same distribution, while with
probability p0, the distribution of a stream can be different before and after k. Denote the
maximum likelihood estimators for the mean and variance of each stream d by

x̄d,i,l :=
1

l − i
l∑

j=i+1

xd,j and S2
d,i,l :=

1

l − i
l∑

j=i+1

(xd,j − x̄d,i,l)2.

Then standard calculations lead us to

`d,k,t = −m+ k

2
log

S2
d,−m,k
S2
d,−m,t

− t− k
2

log
S2
d,k,t

S2
d,−m,t

. (11)

See for instance Hawkins and Zamba (2005, p. 166). Note that Λk,t(p0) also depends on m
although it is suppressed in the notation.

Ideally, a change would be declared if maxk Λk,t(p0) raises above a threshold b. However,
a minor correction is preferable to prevent unwanted behavior, namely, that declaration of a
change is much more likely for small sample sizes t − k. This is so because the distribution
of Λk,t(p0) strongly depends on the number of observations used to estimate the post-change
parameters. For example, the variance of Λ198,200(p0) is much larger than Λ100,200(p0), making a
realization from Λ198,200(p0) more likely to be above b than Λ100,200(p0). An often used remedy is
to find a Bartlett correction (Hawkins and Zamba 2005, p. 166), where one finds a multiplicative
correction factor C(k, t), such that the expected value of the statistic under the null hypothesis
equates to its asymptotic expected value. The asymptotic expected value of Λk,t(p0) under the
null hypothesis is, alas, unknown. However, the asymptotic expected value of 2`d,k,t is 4 due
to the classical result by Wilks. Using that for a chi-square distributed X with a degrees of
freedom, E[logX] = log 2 + ψ(a/2), where ψ is the digamma function, a correction factor for
each stream d is given exactly by

E
[
2`d,k,t/C(k, t)

]
= 4

2C(k, t) =− (m+ t) log(m+ t) + (m+ t)ψ ([m+ t− 1]/2)

+ (m+ k) log(m+ k)− (m+ k)ψ ([m+ k − 1]/2)

+ (t− k) log(t− k)− (t− k)ψ ([t− k − 1]/2) .

In total, the global corrected mixture log-likelihood ratio statistic becomes

ΛCk,t(p0) :=
D∑

d=1

log [1− p0 + p0 exp {`d,k,t/C(k, t)}] . (12)

It further defines the stopping time that constitute the detection procedure,

T (p0, b) := inf
{
t ≥ 2 : max

0≤k≤t−2
ΛCk,t(p0) ≥ b

}
. (13)

For comparing performance, we can now apply T (p0, b) to the original data xt with various
choices of p0, and to the projections yt with p0 = 1 (since we want to see how TPCA handles
sparsity on its own).

In practice, we will also restrict the set of k’s that the maximum is taken over to a set
K = {k : 2 ≤ t − k ≤ w + 1}, where w is called the window size and denotes the number of
previous time-points that are considered as candidate change-points. This is to limit memory
usage and not allow the algorithm to become slower and slower indefinitely as t grows. Choices
for the set K and the effect of the window size is discussed in Lai (1995). Here, we will use
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w = 200 throughout, in line with Xie and Siegmund (2013).

3.2 Monitoring by TPCA
Algorithm 2 summarizes how TPCA is used in conjunction with the mixture monitoring proce-
dure (13) to solve the original change-point detection problem (2). Observe that the monitored
observations are the standardized projections;

zj,t = v̂
ᵀ
jS
−1
0 (xt − µ̂0)

/√
λ̂j , (14)

for j ∈ J , where µ̂0 is the training sample mean, S0 is the diagonal matrix of training sample
standard deviations, and {λ̂j , v̂j}j∈J is the sample eigensystem of the training sample correlation
matrix. In other words, the observations xt are first standardized by ut = S−10 (xt − µ̂0), since
PCA is not invariant to scaling. These standardized observations then form the basis of PCA,

and we get the projections yj,t = v̂
ᵀ
jut. Lastly, the projections are normalized by zj,t = yj,t

/√
λ̂j .

The reason for normalizing the projections is numerical stability, since the variance of yj,t for j
close to D will typically be very small.

Algorithm 2 Monitoring by TPCA

Input: b, p(µ1,Σ1|Σ0) and {xs}0s=−m+1.
1: Compute µ̂0, S0 and the correlation matrix Σ̂0 from {xs}0s=−m+1.
2: J and {λ̂j , v̂j}j∈J ← the results of applying Algorithm 1 to Σ̂0 with p(µ1,Σ1|Σ̂0).

3: zj,t ← v̂
ᵀ
jS
−1
0 (xs − µ̂0)

/√
λ̂j , for t = −m+ 1, . . . , 0 and j ∈ J .

4: t← 0 and ΛCmax,t(1) = 0.
5: while ΛCmax,t(1) < b do
6: t← t+ 1 and new data xt arrives.
7: zt ← (zj,t)← v̂

ᵀ
jS
−1
0 (xt − µ̂0)

/√
λ̂j for j ∈ J .

8: ΛCmax,t(1)← max
k∈K

ΛCk,t(1) based on {zs}ts=−m+1.

9: end while
Return: t

It is important to note that the estimates µ̂0, S0 and {λ̂j , v̂j}j∈J are not updated as more
data arrives. Ideally they would be updated for every new observation xt, but then the procedure
would lose its sequential nature; all projections zj,s for all s would have to be recalculated at every
step, as well as everything based on them. Estimating the quantities needed for the projections
only once in combination with incorporating the estimation uncertainty when calibrating the
threshold b is a solution that allows for both recursive computations on the projections and
control of false alarms under a correctly specified model.

3.3 Controlling False Alarms
How can one set the threshold b? As in regular hypothesis testing there is a trade-off between
false positives and false negatives. There are several sequential analogs, but recall that we use
the probability of false alarm (4) and the expected detection delay (5), respectively, motivated
by the discussion in Lai (1995). A threshold b can now be found by choosing a segment length
n and a probability of false alarm α, then solving α = P∞[T (p0, b) ≤ n] for b. The EDD of the
stopping rules can then be compared, where the goal is as low EDD as possible.

Remark. The average run length (ARL), defined as E∞[T (b)], is perhaps a more commonly used
measure of false alarms. However, in many applications, a false alarm is very undesirable, and
Lai (1995) argues that a more informative measure of false alarms is to consider the probability
of no false alarm during a typical, steady-state period of operation. For example, an average run
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length of 1000 does not necessarily mean that the probability of a false alarm during the first
100 observations is low. Another advantage is that the PFA is much more tractable to compute
by Monte Carlo simulation. Finally, also pointed out by Lai (1995, p. 631), the two quantities
are related approximately by

E∞[T (b)] ≈ n/P∞[T (b) ≤ n],

for the stopping rule we consider.

Finding thresholds for monitoring the raw data can be done by a relatively straight forward
bootstrap procedure. Thresholds for monitoring the PCA projections, however, are slightly
more complicated to attain, so this is what we focus on below. The accompanying R package
tpcaMonitoring can be consulted for all implementational details.

Complications arise for monitoring the projections because uncertainty due to estimating
the principal axes from the training data has to be incorporated. If not, there will be false
alarms due to estimation error rather than an actual change in the distribution. Importantly,
the estimation variance of the sample principal components can not necessarily be disregarded
even for high sample sizes. This is seen from the asymptotic distribution of the eigenvectors of
a sample covariance matrix Σ. Recall that {λj ,vj}dj=1 and {λ̂j , v̂j}dj=1 are the population and
sample eigensystems, respectively. Then v̂j is asymptotically multivariate normal with mean vj
and covariance matrix

Γj =
λj
n

∑

l 6=j

λl
(λj − λl)2

vjv
ᵀ
j , (15)

given that the λj ’s are all distinct eigenvalues (Muirhead 1982, p. 405). Hence, if there is a small
gap between two population eigenvalues, the variance can be large even for large sample sizes.

The estimation uncertainty can be incorporated by the following bootstrapping procedure:

1. Input: Training data {xs}0s=−m+1 assumed to be N(µ0,Σ0), b, n and α.

2. Obtain estimates µ̂0 and Σ̂0 from the training data.

3. Run the TPCA algorithm (Algorithm 1) on Σ̂0 to get the indices J ∈ {1, . . . , D}.

4. Draw a bootstrap training sample {x̃s}0s=−m+1, where x̃s
iid∼ N(µ̂0, Σ̂0).

5. Run Algorithm 2 on {x̃s}0s=−m+1 and equally distributed monitoring observations x̃t
iid∼

N(µ̂0, Σ̂0), t = 1, . . . , n. One exception is that J of Σ̂0 is reused to select projections.

6. Record I{T (1, b) ≤ n}.
7. Repeat 4 - 6 B times.

8. Average the B I{T (1, b) ≤ n}’s to get an estimate α̂ of P∞[T (1, b) ≤ n].

Finally, repeat for different b’s until α̂ is close enough to α within a desired margin of error.
This parametric bootstrap procedure also opens the door for other ways of robustifying the

threshold; pick another distribution to bootstrap training and monitoring samples from than
the normal, and run the otherwise exact same simulations. For example the multivariate t-
distribution or the empirical distribution function (i.e., a nonparametric bootstrap).

A drawback of using bootstrapping to get a threshold b for TPCA monitoring is that each
threshold is conditional on the exact training set, which principal axes J as well as the window
size w. Thus, to obtain exact error control under the aassumption of a correctly specified model,
a new threshold must be found by simulation for every training set. Luckily, these simulations
depend most strongly on the number of projections |J | rather than D, making it scalable.
Setting up and running these simulations is the cost of incorporating all sources of uncertainty
and achieving exact error control.
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4. NUMERICAL PERFORMANCE ANALYSIS
In this section, the detection performance of TPCA monitoring is assessed through an extensive
simulation study. The three questions we want to answer are: In terms of EDD, how well
does TPCA monitoring compare to another method that also explicitly handles sparse changes?
What is gained by using TPCA compared to simply picking the least varying projections? How
much can the dimension be reduced by without compromising on detection speed?

4.1 Setup
In all the simulations we present here, n = 100 and α = 0.01 with 95% confidence (an ARL of
approximately 104) and w = 200. The main simulation study is performed for D = 100 and
m = 200, while some results for D = 500 with m = 1000 are presented briefly at the end of the
results section. Four different classes of methods were run on each change scenario: The mixture
procedure on the raw data with method parameters p0 = 0.03, 0.1, 0.3, 1, the J = 1, 2, 3, 5, 10, 20
most (Max PCA) and least (Min PCA) varying projections, as well as TPCA with cutoffs
c = 0.8, 0.9, 0.95, 0.99, 0.995, 0.999. For TPCA, change distribution (7) was used with some
modifications to see if incorporating information had any effect. To be precise, we assumed
knowledge about which change type was of interest, so for changes in mean, for example, we set
pµ = 1 and the others to 0. In addition, we set K ≤ D/2 to emphasize sparse changes.

All the different change scenarios were considered for 30 randomly chosen pre-change corre-
lation matrices Σ0, with varying strengths of correlation. For each correlation matrix, a training
set of m = 200 observations was drawn independently from N(0,Σ0). 15 matrices fall into a
"low correlation" group and 15 into a "high correlation" group (Figure 3). "Low" and "high"
refers to different choices of the αd parameter in the method of Joe (2006) for generating ran-
dom correlation matrices, where αd < 1 (αd > 1) yields a higher (lower) probability of large
correlations in the space of correlation matrices. The αd’s are evenly spread between 1 and 50
in the "low" group, while between 0.05 and 0.95 in the "high" group.

Figure 3. Scree plots (left) and corresponding correlation density plots (right) of the 30
random training Σ̂0’s used in the simulations. As a reference for the spread of the matrices, 15
estimates based on 200 standard normal samples are also shown in black.

After a change-point at κ = 0, observations to monitor were drawn independently from
N(µ1,Σ1). For all change types and sizes, the proportion of affected streams was varied over
p = |D|/D = 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.98. Which |D| dimensions that were changed
was (uniformly) randomized in every simulated change. Considered changes in the mean were
µd = 0.5, 0.7, 1, 1.3 for d ∈ D, where Σ1 = Σ0. To explain the changes in variance, note
that any covariance matrix Σ can be decomposed into its variance and correlation part by
Σ = CRC, where R is the correlation matrix corresponding to Σ, and C is a diagonal matrix
with the standard deviations σ on its diagonal. Using this relationship, keeping the mean and
the correlation matrix constant, the affected standard deviation components were changed to
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σd = 0.5, 0.75, 1.5, 2. Finally, correlations ρdi were changed multiplicatively by factors adi =
0, 0.25, 0.5, 0.75 for d 6= i ∈ D, while µ1 = µ0 and σ1 = σ0.

In total, the setup consists of a grid of 108 change scenarios (combinations of change type,
change size and change sparsity). 500 simulations of each change scenario is performed, and all
the 22 combinations of methods and method parameters (p0, J or c) are run on every simulated
data set to estimate the EDD. Finally, everything is repeated for each of the 30 training sets,
including finding new thresholds for all the PCA-based method. This is important to have
in mind to grasp the upcomming figures and results, which are compact summaries of a vast
amount of simulations. Also note that the figures showing EDDs have log(p) on the x-axis to
highlight the sparse change scenarios.

4.2 Results
When the correlations are high, monitoring the least varying projections through TPCA or Min
PCA can detect almost all the tested changes immediately with an EDD of 2-3 (Figure 4 and
5, and Table 1). Particularly, even the sparsest (p = 0.02), smallest changes in the mean and
variance (µd = 0.5 and σd = 0.75, 1.5) can be detected at this speed by monitoring only the
two least varying projections. I.e., a dimension reduction of 98% can be obtained, while gaining
in detection speed compared to the mixture procedure. The sparsest changes in correlation is
the only notable exception, where the EDD is 100-300 time-steps, depending on the size of the
change. Monitoring the most varying projections leads to considerably slower detection.

Table 1
High correlation: Average EDD per change type for each method’s best method parameters
(in parenthesis), as a summary of Figure 4. The average is taken over change sparsity, change
size and the 15 full runs with different training sets. To display robustness, the listed method
parameters are the ones that are within 1 time unit of the method’s minimum average EDD.

EDD

Change type Max PCA(J) Min PCA(J) TPCA(c) Mixture(p0)

Mean 27.4 (20) 1.6 (2, 3, 5, 10) 1.8 (0.8, 0.9, 0.95,
0.99 0.995, 0.999) 15.2 (0.03, 0.1)

Variance 198.9 (20) 2 (2, 3, 5) 2.1 (0.8, 0.9, 0.95,
0.99 0.995, 0.999) 8 (0.03)

Correlation 50.2 (20) 10.8 (20) 22.4 (0.999)

As the correlations between streams become smaller, the performance of the least varying
projections deteriorate (Figure 6 and 5, and Table 2). In general, 10-20 projections are needed to
attain a comparable performance with the mixture procedure; slightly worse performance for the
denser, larger changes and better for the the sparse, small changes. Thus, when the correlations
are low, some compromise on detection speed must mostly be made to reduce the dimension,
but a reduction of 80 − 90% will often bring the EDD within 10 time units of the mixture
procedure. The most noticable difference from the high correlation scenario occurs when the
variance decreases, where the most varying projections now are the most sensitive. Note that
this behaviour is in line with the two-dimensional results of Tveten (2019, p. 5). For changes in
correlation when the correlations are small, we see that an even higher c than 0.999 is needed
for TPCA to pick enough axes to detect the sparse changes as efficiently as Min and Max PCA
with 20 projections.

In terms of detection speed alone, there is no advantage of using TPCA compared to simply
picking the axes of the least varying projections as in Min PCA; more or less the same projections
are monitored under both schemes. However, Tables 1 and 2 point to the fact that TPCA will
automatically choose a reasonable subset of projections quite robustly with respect to the cutoff
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Figure 4. High correlation: EDD for changes in the mean (first row), variance (second row)
and correlation (third row) of varying change sparsity and change size. Each line shows the
EDD based on 500 simulations for a single method parameter, averaged over the 15 full runs
with different high-correlation training sets. Note that the mixture procedure applied to the
raw data can not detect changes in correlation and is thus absent from the last line of figures.

c given some knowledge about which changes are of interest. This robustness is not observed to
the same degree by picking projections manually with Min PCA. The exception to this rule is
for decreases in variance and changes in correlation of weakly correlated data.

Lastly, a hint towards the generalizability of these results to higher dimensions than D = 100
is given in Figure 7. For D = 500, the change sparsities tested was p = 0.002, 0.005, 0.01, 0.02,
0.05, 0.1, 0.3. Observe that TPCA and Min PCA are still able to detect the very sparse changes
in the 500-dimensional data stream at almost the same speed as the sparse ones in the 100-
dimensional stream.
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Figure 5. An illustration of the errors involved in Figures 4 and 6: Average EDDs with
average 95% confidence intervals for a subset of method parameters. The averages are taken
over all the 30 training sets, meaning that each confidence limit is an average of 30 individual
limits. EDD estimates that are high or of sparse changes are generally more uncertain.

Table 2
Low correlation: Average EDD per change type for each method’s best method parameters
(in parenthesis), as a summary of Figure 6. The average is taken over change sparsity, change
size and the 15 full runs with different training sets. To display robustness, the listed method
parameters are the ones that are within 1 time unit of the method’s minimum average EDD.

EDD

Change type Max PCA(J) Min PCA(J) TPCA(c) Mixture(p0)

Mean 20.6 (20) 17.9 (20) 17.6 (0.9, 0.95, 0.99,
0.995, 0.999) 16 (0.03)

Variance 184.3 (20) 158.8 (10) 154.8 (0.995) 8.3 (0.03)
Correlation 30 (20) 28.5 (20) 52.3 (0.999)
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Figure 6. Low correlation: EDD for changes in the mean (first row), variance (second row)
and correlation (third row) of varying change sparsity and change size. Each line shows the
EDD based on 500 simulations for a single method parameter, averaged over the 15 full runs
with different low-correlation training sets. Note that the mixture procedure applied to the
raw data can not detect changes in correlation and is thus absent from the last line of figures.

Figure 7. A comparison of EDDs for D = 100, 500 with m = 2D for a single training set
generated from a randomly drawn correlation matrix using αd = 1. Only the best choices of
method parameters are shown. These figures are representative of the pattern also seen for
µd = 0.7, 1, σd = 0.5, 2 and adi = 0.5, 0.75, which are omitted due to space limitations.
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5. TESTING ON THE TENNESSEE EASTMAN PROCESS
In this section, TPCA is extended to handle time-dependent data and compared to dynamic
PCA (DPCA) as used in the stochastic process control (SPC) litterature and the method of
Kuncheva and Faithfull (2014) (what we have called Min PCA or Min DPCA below). See for
example Vanhatalo et al. (2017) or Rato et al. (2016) for an introduction to DPCA in SPC.
The methods are tested on the well-known Tennessee Eastman Process (TEP): a model of an
industrial chemical process used to generate realistic data from a large system (Downs and
Vogel 1993). As a test bed, we will use the available TEP dataset from Rieth et al. (2017),
which includes fault free training sets of 500 observations as well as faulty test sets of 960
observations with a change-point at κ = 160. Each observation is a sample from the process
with 3 min intervals and consists of 41 direct measurements (xmeas) and 11 controlled input
variables (xmv), 52 in total. There are 500 complete test sets for each of 20 different faults.
Most faults cause sparse distributional changes, where faults 1-7 are changes in mean, fault 8-12
are changes in the variance, and the rest are of various other types (Rato et al. 2016). As before,
we measure the EDD of detecting these faults after a short training period, now on m = 500
observations. We stress that this means no extra validation set is available for fine-tuning, which
DPCA generally depends on.

To let TPCA account for the highly auto-correlated TEP observations, we extended it in
similar fashion as PCA is extended to DPCA. I.e., a lag l is chosen, and the observation vectors
xt are lag-extended to x̃t = (x

ᵀ
t−l, . . . ,x

ᵀ
t )

ᵀ before they are fed to PCA. This induces a VAR
model with lag l on the data. Then, a change distribution for xt can be set up like before, where
each simulated change now corresponds to l + 1 duplicate changes in the parameters of x̃t. In
this way, pre- and post-change parameters of x̃t are obtained, which can be used to measure
the sensitivity of the projections ṽ

ᵀ
j x̃t, where ṽj , j = 1, . . . , D(l + 1), are the eigenvectors of

the correlation matrix of {x̃t}0t=−m+l+1. We call this method tailored dynamic PCA (TDPCA),
and we will also compare it to simply picking the J most (Max DPCA) and least (Min DPCA)
varying projections, like previously. It is also possible to implement a change distribution over
changes in the auto-correlations, but for simplicity we keep using change-distribution (7) and
close relatives. When pµ = 1, pσ = 1 and pµ = pσ = pρ = 1/3, we denote the methods by
TDPCA(mean), TDPCA(var) and TDPCA(unif), respectively.

The main additional challenge comes from setting a valid detection threshold when the
observations are not independent multivariate normal. We tackle this by switching the para-
metric bootstrap procedure of Section 3 with a non-parametric block bootstrap (Kunsch 1989).
Thresholds are set to meet a PFA of α = 0.01 on n = κ − l observations with 90% confidence,
for comparisons with the empirical probability of false alarms α̂.

Vanhatalo et al. (2017, p. 10) suggest lags l = 2, 3 or 5 for DPCA on the TE process. In our
case, using lags 2 and 3 were not sufficient to capture most autocorrelation, so we proceeded
with l = 5 for all methods as well as in the bootstrap. This yields 312-dimensional lag-extended
observations with a change-point at κ− l = 155.

Before proceding to the results, DPCA must be fit into the framework of controlling the
PFA and measuring EDD. DPCA is not a change-point method, and only measures how non-
conforming each new data point x̃t is to the trained DPCA model by two statistics. The
Hotelling’s T 2(x̃t) is the squared Mahalanobis distance of x̃t in the DPCA model subspace, and
the Q(x̃t)-statistic measures the orthogonal distance of x̃t to the DPCA subspace (Rato et al.
2016). The corresponding stopping rule for DPCA is TDPCA = min(T1, T2), where

T1 = inf{t ≥ 0 : T 2(x̃t) > T 2
αn
} and T2 = inf{t ≥ 0 : Q(x̃t) > Qαn}},

T 2
αn

and Qαn being percentiles of each statistic’s distribution. The percentiles depend on n to
fulfill the PFA requirement P∞(TDPCA ≤ n) ≤ α. By assuming that false alarms are equally
likely for both statistics and applying a union bound, we get that αn = α/(2n). This is a
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slightly conservative percentile. Since we do not have a validation set to find the two thresholds
precisely, we use the common approximation of T 2 being χ2

r , where r is the number of retained
components in the DPCA model, and the approximation of the Q-statistic given by Jackson
and Mudholkar (1979). Since the approximation for the T 2 assumes normality and temporal
independence of the retained (most varying) projections, we expect it to be overly optimistic for
the TEP data, but counter-weighted somewhat by the conservative bound on αn. Thus, it is a
realistic setup in the case of no validation set, but we don’t expect it to work very well in terms
of false alarm control.

Lastly, in the results below, we have set the cumulative percentage of variance explained in
DPCA to 95%, J = 20 in Min and Max DPCA, c = 0.9 in TPCA(mean) and TPCA(uniform),
and c = 0.99 in TPCA(var). The reason for the cutoff-values is that these also result in approx-
imately 20 projections being chosen, to be comparable with Min and Max PCA. Note that it
is generally better to set c too high than too low, as too few projections being chosen can be
detrimental, while including a few more projections than necessary only slows detection slightly.
Our experiments suggest that a dimension reduction of 7− 10% is a good choice.

The results are summarized in Table 3 and Figure 8. As expected, the proportions of false
alarms for DPCA is much higher than the nominal 0.01, which disqualifies it for use in this
setting. The same is the case for Max DPCA, which suffers from the most varying projections
being long-range auto-correlated. Among the methods that achieve appropriate error control,
one of the TDPCA variants are the quickest in all cases. In particular, note that TDPCA still
beats DPCA in 13 out of 20 cases despite the considerably stricter control on false alarms. When
we gave DPCA the luxury of a massive validation set to find more accurate thresholds, we still
found that TDPCA beats DPCA in 15 out of 20 cases. Unexpectedly, there is no systematic
relation between the type of change and whether TDPCA(mean) and TDPCA(var) is best,
they are mostly almost equal, and only slightly faster than TDPCA(unif). Given the results of
Section 4, it is slightly surprising that TDPCA is significantly better than Min DPCA.

Figure 8. Kernel density estimates of run lengths for faults 10 and 11 of the TE process. The
dashed line marks the change-point.
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Table 3
EDD results for the TEP data. The quickest methods among those that achieve acceptable

error control (α̂ ≤ 0.01) are in bold.

Fault Min DPCA TDPCA(unif) TDPCA(var) TDPCA(mean) Max DPCA DPCA

α̂ 0.000 0.000 0.000 0.008 0.156 0.182

1 14.6 7.4 7.4 5.4 17.0 6.2
2 42.4 22.8 19.7 17.0 25.3 13.9
3 800.0 769.4 695.5 663.4 668.5 416.7
4 757.8 20.3 9.6 12.9 127.9 1.0
5 2.9 2.0 1.8 2.6 27.0 2.1
6 1.9 1.2 1.0 1.0 23.3 1.0
7 5.1 2.6 2.7 1.9 9.8 1.0
8 49.0 24.7 24.2 20.0 40.7 23.0
9 800.0 766.4 695.6 661.8 663.4 401.6
10 45.0 28.6 25.0 24.6 317.0 158.0
11 308.0 24.0 16.3 18.6 635.9 9.2
12 9.1 7.8 7.3 7.8 34.6 9.1
13 81.7 47.2 43.3 39.6 61.6 45.5
14 54.2 27.0 22.4 20.1 9.7 2.3
15 800.0 313.7 80.8 208.3 672.3 377.1
16 31.5 17.7 16.3 15.5 603.4 219.3
17 44.9 36.4 34.5 33.5 46.5 35.0
18 60.4 51.6 48.7 48.0 73.8 51.6
19 723.2 14.6 13.5 9.8 692.1 19.1
20 52.9 43.5 38.4 40.0 505.0 48.2

6. CONLUDING REMARKS
The problem of detecting sparse changes in the mean and/or covariance matrix of high-dimensional
data is a problem that admits no efficient direct solution because of the number of samples nec-
essary to estimate the covariance matrix. Monitoring projections of the incoming data onto the
pre-change principal axes offers an indirect solution that is also computationally scalable. Which
projections to monitor for specific distributional changes is not self-evident, and this choice is
what TPCA offers an answer to. We have seen that TPCA’s choice of projections work well
in almost all cases studied when modelling assumptions are correct, the exception being sparse
changes in the correlation, and decreases in variance when the correlations are weak. Moni-
toring the TPCA projections work especially well if the data streams are strongly correlated,
where most changes, even very sparse and small ones, can be detected almost immediately in
100-dimensional normal data. On the other hand, if correlations are weak, some performance
is lost by dimension reduction, but one still gains the ability to detect changes in correlation
without loosing too much in detection speed for changes in the mean and variance compared to
the benchmark mixture procedure.

On the TEP data, we saw that the dynamic version of TPCA combined with a non-parametric
block-bootstrap procedure to robustly set thresholds worked well in detecting a wide range of
changes quickly. Importantly, this was achieved without a large validation set, which is often
needed to make the classic SPC tool DPCA work properly. For error control to be achieved,
however, enough lags must be included so that the TDPCA projections are not subject to major
auto-correlation. In terms of detection speed, TDPCA improves upon the method of Kuncheva
and Faithfull (2014) (Min DPCA), and is also slightly quicker than DPCA in most cases. The
superiority of TDPCA over DPCA is most notable when the changes are small and sparse,
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whereas most changes in the TEP data are sparse, but large.
It should also be mentioned that we have only considered the question of when to raise an

alarm. After an alarm has been raised, it is of course natural to ask which parameters and
which dimensions/sensors that changed. This question is left for future research, but relevant
litterature already exists in e.g. Hawkins and Zamba (2009) and Lakhina et al. (2004).

Other interesting follow-up questions include: (1) How does TPCA work combined with
more sophisticated tools for handling time-dependence? (2) We have studied a general pre-
change covariance matrix. What if it has a known structure of a certain form, like blockwise-
dependence? (3) Can the insight about PCA for change detection provided here be extended to
other dimension reduction tools?
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SUPPLEMENTARY MATERIALS
Appendix: A) Sensitivity under other change distributions, B) Dealing with indefinite post-

change correlation matrices. (.pdf document)

R-package tpca: The TPCA routine for selecting projections (Algorithm 1). Also includes the
dynamic version of TPCA used in the TEP example. (available from
https://github.com/Tveten/tpca)

R-package tpcaMonitoring: Includes an implementation of Algorithm 2 and a single function
to reproduce the entire simulation study in Section 4. The package also contains .txt files
with the results from our own run of the simulation study, to quickly recreate the figures.
(available from https://github.com/Tveten/tpcaMonitoring)

R-package tdpcaTEP: All the code to easily reproduce the TEP results. (available from
https://github.com/Tveten/tdpcaTEP)
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APPENDIX A: SENSITIVITY OF PROJECTIONS UNDER OTHER CHANGE
DISTRIBUTIONS

Figure 9. Monte Carlo estimates of E[Hj ] and Pj with respect to the change distribution (7)
and uniformly drawn pre-change covariance matrices Σ0, with D = 100. (This is the same
figures as shown in the main body of the article, for easier comparison with the figures below.)
103 randomly drawn Σ0’s were used, as well as 103 Monte Carlo draws from the change
distribution for each Σ0

Here we present a simulation study for investigating the robustness of our results to change
distribution (7), restated below for completeness.

C ∼ Multinom(pµ = 1/3, pσ = 1/3, pρ = 1/3)

K ∼ Unif{1, . . . , D/2}
µd|K,C iid∼ Unif[−1.5, 1.5], d ∈ D

σd|K,C iid∼ 1

2
Unif[1/2.5, 1] +

1

2
Unif[1, 2.5], d ∈ D

adi|K,C iid∼ Unif[0, 1), d 6= i ∈ D.

(7)

In the simulations, we set D = 100, and draw 103 Σ0’s uniformly from the space of correlation
matrices (Joe 2006). For each Σ0, the sensitivity to changes is assessed as in Section 2, by means
of 103 draws from a change distribution and calculating summary statistics of the Hellinger
distances. However, we now average the sensitivity results over the 103 Σ0’s, to get an average
picture over many pre-change conditions. Each of the figures presented below are therefore
averages over 103 figures like the ones shown in Section 2 The average sensitivity results for
change distribution (7) are shown in Figure 9.

There are four alternative change distributions we look at.

• Larger changes: Mean interval [−3, 3], standard deviation interval [1/4, 4] (with the
same split between decreases and increases) and correlation interval [0, 0.5].

• Smaller changes: Mean interval [−0.5, 0.5], standard deviation interval [1/1.5, 1.5] and
correlation interval [0.5, 1].

• Equal changes: The same intervals as in (7), but with all affected dimensions changing
with the same value. For example, only one change size µ is drawn, and µd = µ for all
d ∈ D.

The change parameters not mentioned have the same distribution as in (7)
Figures 10 11 and 12 show the results for the larger, smaller and equal changes, respectively.

Overall, the sets of figures are very similar. If one difference is to be mentioned, it is that for
cutoff values c close to 1, both the larger and smaller changes would have resulted in slightly
more projections being chosen by TPCA.
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Lastly, Figure 13 shows the average sensitivity results with the same change distribution (7)
but now with D = 200,

Figure 10. Monte Carlo estimates of E[Hj ] and Pj with respect to the change distribution
(7) and uniformly drawn Σ0’s, but with larger changes

Figure 11. Monte Carlo estimates of E[Hj ] and Pj with respect to the change distribution
(7) and uniformly drawn Σ0’s, but with smaller changes

Figure 12. Monte Carlo estimates of E[Hj ] and Pj with respect to the change distribution
(7) and uniformly drawn Σ0’s, but with a equal changes across all affected dimensions
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Figure 13. Monte Carlo estimates of E[Hj ] and Pj with respect to the change distribution
(7) and uniformly drawn Σ0’s, but now with D = 200.

APPENDIX B: DEALING WITH INDEFINITE POST-CHANGE CORRELATION MATRICES
When we change entries ρdi in the correlation matrix Σ0 by multiplying them with factors adi,
it is not guaranteed that the changed matrix is positive definite. To overcome this, we have
used the function nearPD in the Matrix package of R. This is a function that finds the nearest
positive definite matrix to the input matrix in sup norm. To obtain a correlation matrix, the
diagonal is then put to 1.

2690



Paper III

Real-time prediction of propulsion
motor overheating using machine
learning

Hellton, K. H., Tveten, M., Stakkeland, M., Engebretsen, S.,
Haug, O. and Aldrin, M.
Submitted for publication.

III

91





ARTICLE

Real-time prediction of propulsion motor overheating using machine

learning

K. H. Helltona, M. Tvetenb, M. Stakkelandb,c, S. Engebretsena, O. Hauga and M.
Aldrina

aSAMBA, Norwegian Computing Center, Oslo, Norway; bInstitute of Mathematics,
University of Oslo, Oslo, Norway; cABB, Oslo, Norway

ARTICLE HISTORY

Compiled October 6, 2020

ABSTRACT
Thermal protection in marine electrical propulsion motors is commonly implemented
by installing temperature sensors on the windings of the motor. An alarm is issued
once the temperature reaches the alarm limit (H), while the motor shuts down
once the trip limit (HH) is reached. Field experience shows that this protection
scheme in some cases is insufficient, as the motor may already be damaged before
reaching the trip limit. In this paper, we develop a machine learning algorithm to
predict overheating based on past data collected from a class of identical vessels. All
methods were implemented to comply with real-time requirements of the on-board
protective systems with minimal need for memory and computational power. Our
two-stage overheating detection algorithm first predicts the temperature in a normal
state using linear regression fitted to regular operation motor performance measure-
ments, with exponentially smoothed predictors to account for time dynamics. Then
it identifies and monitors temperature deviations between the observed and pre-
dicted temperatures using an adaptive cumulative sum (CUSUM) procedure. Using
data from a real fault case, the monitor alerts between 60 to 90 minutes before fail-
ure occurs, and is able to detect the emerging fault at temperatures well below the
current alarm limits.

KEYWORDS
Overheating, Anomaly detection, CUSUM, Linear regression, Temperature
monitoring

1. Introduction

The common safety practice for prevention of overheating in marine electrical propul-
sion motors is based on physically mounted temperature sensors on the windings of the
motor, often by resistor temperature detection (RTD) devices (IEEE Standard 3004.8
2016). An alarm is issued once the temperature reaches the alarm limit (H) and the
motor shuts down if the trip limit (HH) is reached. In the propulsion control software,
there is a fixed HH limit (typically at 155 ◦C), that only allows for a single point
of critical temperature level protection. Field experience shows that these procedures
can be insufficient, in particular with respect to timeliness, as the motor may already
be damaged before the trip limit is reached. Based on the mounting spot of the RTD
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sensors, the efficiency, accuracy, and timeliness of the protection system can vary – the
highest temperature of the windings may be on a different location than the monitor-
ing points. For instance, a hotspot may develop at a location where excess heat is not
transferred effectively to the monitoring spots, and hence overheating might not be
detected by the sensors before a critical fault has occurred. There is hence a need for
more adaptive and dynamic monitoring of overheating. The modelling of excess tem-
perature development or overheating has traditionally been based on physical models
of the system utilising thermodynamics or electrical parameters (see e.g. Gnacinski
2008; Maftei et al. 2009; Lystianingrum, Hredzak, and Agelidis 2016; Pawlus et al.
2017), but these model-based approaches may be difficult to develop.

In this paper, we instead demonstrate how past data and machine learning, follow-
ing a data-driven approach, can be used for timely prediction of overheating in high
performance marine propulsion motors. The main target is to implement a real-time
thermal protection function that can detect an abnormal state prior to reaching the
HH temperature limit. We focus on using a relatively simple and transparent model,
which can be easily implemented in practice, without requiring substantial computa-
tional power and memory. The monitor uses measurements that are readily available
and can be implemented based on existing instrumentation on industrial grade com-
putation engines commonly applied in the on-board system. Using data from a known
fault incidence, we illustrate the usefulness of our monitor in detecting faults earlier
and at lower temperatures than the standard procedures. Such data-driven approaches
to condition monitoring are increasingly used for anomaly detection, fault identifica-
tion and prognostics in marine vessels (Vanem and Brandsæter 2019).

1.1. System overview

We consider thermal protection for propulsion motors on ships with diesel-electric
propulsion systems. The rating and dimension of these motors depend on the size
and design of the ship, and the rating of the motor ranges from kilowatts to several
megawatts of generated power. Protection of such motors is important both from
a cost and safety point-of-view. From the cost perspective, damage to a propulsion
motor may result in costly repairs or replacements, in addition to a loss or reduction
of the ability to provide the intended fiscal services over a period of time. From the
safety perspective, a partial loss of propulsion at a critical moment due to single motor
failure may also lead to a safety hazard due to reduced manoeuvrability of the ship.
The critical function of this class of motors motivated the development of the novel
machine learning-based protection function described in this study.

A schematic overview of the overall system we consider can be found in Figure 1.
An on-board freshwater cooling system is used to control the temperature of the motor
and other units. The motor itself is cooled by air, which is circulated by one or more
fans. Heat is transferred from the hot air to the water-based cooling system through a
heat exchanger, as seen in Figure 1. Cooling air temperature is measured on the inlet
and outlet of the heat exchanger. The rotation speed of the motor is either measured
directly, or provided by the Propulsion Control Unit (PCU), which is a controller
application integrated with the propulsion frequency converter controlling the speed
and power of the propulsion motors. The mechanical torque and electrical power are
calculated and provided by the PCU. The system overview, shown in Figure 1, is
fairly generic and will be suitable for other applications beyond electrical motors and
diesel-electric propulsion systems on ships. More instrumentation may be available in
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Figure 1. Schematic overview of the system. The cooling air inlet and outlet temperatures are abbreviated
Tin and Tout, respectively.

some applications, but a minimum set was chosen for training and implementation, in
order for the protection function developed to be as general as possible.

2. Data

2.1. Training data

The data made available by ABB consist of temperature and performance recordings
from medium voltage (MV) electrical propulsion motors and the surrounding cooling
system aboard four vessels of the same design. Each vessel has three different motors
of two different classes, named class I and II in this paper, one motor of class I and two
motors of class II. The temperature measurements (◦C) on the windings of the motors
were recorded by six sensors in total, located in two separate triplets of windings;
referred to as U1, V1,W1, and U2, V2,W2. Several variables of the performance and the
motor’s surrounding cooling system could be measured, but the following subset of
variables was recorded consistently across all the vessels: power of the motor (% of
maximum nominal power), speed of the motor (% of maximum nominal speed), and
mechanical torque (% of maximum nominal torque), together with the inlet tempera-
ture (◦C), and the outlet temperature (◦C) of the cooling air in the cooling system.

2.2. Preprocessing

The data from each vessel and motor were collected at different time periods in 2017
and 2018. The time periods of collected data vary for the different vessels: 125 days,
around 4 months, for the first vessel; 80 days, around 2.5 months, for the second vessel;
294 days, around 10 months, for the third vessel; and 262 days, around 9 months, for
the fourth vessel.

The data were collected using the ABB Remote Diagnostics System (RDS), an edge
device whose function is to collect data from the on-board devices and transfer it via
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a satellite link to cloud storage, enabling remote troubleshooting and data analysis.
The on-board protection systems collect data at regular, sub-second intervals, while the
RDS queries the data using different data collection schemes. In the considered training
data, all measurements were collected using an asynchronous sampling regime, where
the values were polled at regular intervals, but only stored when the difference between
the current and the previously stored value exceeded a given threshold. The threshold
is configured differently for the different measurements. Under the asynchronous setup,
substantial amounts of data are collected during dynamic periods, while none or few
samples are available during stationary periods, for instance at zero power, or when
running at a constant power over a long period of time. The main strength of the
asynchronous sampling regime is a reduction in storage capacity and bandwidth for
data transfer during stationary periods, while still being able to record data with a
relatively high bandwidth in dynamic periods (Losada, Rubio and Bencomo 2015). The
main weakness is reduced robustness to data gaps, as missing measurements cannot
be separated from stationary periods without additional information.

The temperature, performance, and cooling system measurements were thus
recorded at non-uniform time intervals with gaps ranging from milliseconds to several
hours or days. To obtain regularly sampled data, required for the machine learning
analysis, all recordings were mapped onto a regular grid with 1 second sampling time,
over the range spanned by the timestamps of all the measurements. The synchroni-
sation of the temporal scale was applied to each ship separately as the collected data
covered different periods. With several recordings within the same second, the last
observed value was chosen.

To impute the missing values in the regular time-aligned data, we applied a last
value carried forward (LVCF) interpolation principle, separately for each variable. This
complies with the asynchronous sampling regime in that a sequence of non-recorded
measurements will be replaced by its previous recorded value. Alternatively, given
a synchronous sampling regime or a combination of asynchronous and synchronous
measurements, a linear interpolation approach could have been used. There are, how-
ever, also instances of missing data due to malfunctioning registration. We, therefore,
determined an upper threshold of 48 hours for the length of the periods to be inter-
polated. The value of 48 hours was chosen to cover periods of long-distance voyages
with stable conditions observed in the data. In addition, for the slowly changing tem-
perature measurements, interpolation was only carried out if the difference between
measurements at either end of the period was below 3◦C. Changes in temperature
larger than this threshold suggested that the missing observations were due to mal-
functioning, and not the asynchronous sampling procedure. For the rapidly changing
measurements, i.e. power, speed, and torque, a reasonable restriction could not be
defined and interpolation was performed regardless of the change in value.

Before the synchronisation of the data, there were approximately 650 000 measure-
ments for the temperature measurements and 3 million observations for the power,
speed, and torque measurements. After synchronisation, but before interpolation, there
were around 450 000 complete observations with registered measurements in all vari-
ables. After interpolation, there were around 78 million complete observations.

Finally, overheating can only occur when the motor is in fact running, and predicting
the motor temperature at zero power corresponds to predicting ambient temperature.
Therefore the final preprocessing step was to censor all observations where the power
was approximately zero, set at the practical limit of the power being less than 1%.
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Figure 2. Illustration of the general framework for overheating detection. The left panel shows the observed

and predicted temperatures under normal conditions. The right panel shows an observed temperature signifi-
cantly exceeding the predicted temperature, indicating a possible overheating event.

3. Methods

Our general framework for detecting heat development is to compare a prediction of
the temperature in a normal state to the actually observed temperature, and monitor
deviations between the two. If the observed temperatures are significantly higher than
the predicted temperatures, we may suspect overheating. The approach is illustrated
in Figure 2. The left panel shows the observed and predicted temperatures under nor-
mal conditions, where they largely agree. The right panel, on the other hand, shows
a hypothetical scenario where the observed temperature significantly exceeds the pre-
dicted temperature, indicating a possible overheating event. The novel contribution is
to predict the winding temperature using a machine learning model to emulate the
physical system. The prediction is based on available training data of motor perfor-
mance and cooling system measurements under normal conditions to describe how the
temperature should behave.

We therefore propose a framework for overheating detection consisting of two parts:

(1) first build a predictive machine learning model for the winding temperature
based on observed historical data,

(2) then monitor and detect deviations in the observed winding temperatures from
the predicted normal state values. When deviations exceed a certain threshold,
an alarm is issued.

In the predictive step, we train the machine learning model to predict the average
motor temperature Tm (averaged over all windings) to ensure generalisability as the
locations of sensors and windings may differ across vessels and motors. In the detec-
tion step, we monitor the deviations of the observed temperature on the individual
windings, in order to detect overheating events as early as possible. All analyses in the
study were performed using the statistical software R.
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3.1. Modelling temperature using machine learning

The first step is to train a machine learning model to emulate the physical system of the
motor. We use ordinary least squares (OLS) linear regression (Chambers 1992; Hastie,
Tibshirani and Friedman 2001) as the machine learning algorithm, to comply with the
practical constraints of the on-board protective system with limited computational
power and memory. The OLS model predicts the average motor temperature Tm, or
the output yt, at time t as a linear function of M input variables xi,t at time t:

yt = β0 + β1x1,t + · · ·+ βMxM,t + εt,

with a noise term εt. The initial input variables are the power, speed and torque of
the motor and the cooling air inlet temperature. In addition, the cooling air outlet
temperature is also available, but the role and subsequent exclusion of the cooling air
outlet temperature from the considered model is discussed in Section 5.

The model is fitted by least squares using the QR factorisation method (Hansen,
Pereyra and Scherer 2013). To optimise the predictive ability of the final model, we
assess reasonable transformations of the input variables and select the best in terms
of prediction error.

3.1.1. Transformation of input variables

We first determine the relevant transformations of the input variables for the OLS
regression algorithm. Expert knowledge regarding the physical system of the motor
guides the inclusion of relevant transformations. First, it is assumed that the impact of
the motor speed and torque on the winding temperature would be the same irrespective
of the direction of rotation, such that only the absolute values of the speed and torque
variables are considered as inputs. Further, the power of the motor is always positive.

The motor performance measurements of speed, torque, and power are characterised
by large and abrupt changes, as seen in the left panel of Figure 3. The individual sen-
sor and mean temperatures are, on the other hand, slowly varying measurements as
the motor, being a block of metal, heats up through conduction. We therefore con-
sider time-lagged, smoothed transformations of the volatile input variables, as such
smoothed variables will be more informative of the temperature, accounting for the
time dynamics of the system. For our purpose, exponential smoothing, or exponen-
tially weighted moving average (EWMA) (Brown 1956; Holt 1957), is seen to be a good
choice for constructing such lagged input variables. Importantly, exponential smooth-
ing can be recursively defined, requiring minimal memory, such that the transformation
is easily implementable in an industrial real-time system. Alternative smoothing ap-
proaches, such as fixed-window moving averages, would in comparison require more
memory.

EWMA smooths the time series using an exponential window function. It temporally
lags the original input variable u by recursively adding current variable values to
previous aggregates, multiplied by a smoothing factor 0 < θ < 1. More formally, the
exponentially smoothed input variable, xt at time-step t, of the original input variable,
ut, is given by

xt = (1− θ)xt−1 + θut, u0 = x0.

The smoothing factor θ determines the time constant of the system, τ , where the
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Figure 3. The left panel shows an example of abrupt changes in speed, power, and torque compared to

the slowly changing mean temperature at an occurrence of acceleration of speed and torque. The right panel
shows the corresponding exponentially smoothed variables of speed, power, and torque, together with the

non-smoothed mean temperature.

relationship between θ, τ , and the sampling interval ∆T is given by

θ = 1− e−∆T/τ ' ∆T

τ
, τ � ∆T.

The time constant, τ , of an exponential moving average is hence given by τ =
∆T/ log(1 − θ), and represents the amount of time it takes the smoothed response
of a unit set function to reach 63.2% of the original signal. The EWMA characterises
the solution to a first-order ordinary differential equation, and therefore gives a good
approximation to physical systems such as the heat transfer models.

When constructing the exponentially smoothed variables, a mechanism for handling
the remaining missing or censored observations is needed. We choose to reset the
exponential smoothing if an observation xk is missing, meaning that the smoothing is
initialised by setting y0 equal to the first value after the missing observations. After
a reset, the smoothing requires time to stabilise, such that the 30 first minutes are
subsequently censored.

3.1.2. Selection of input variables

We then select the best input variables to be included in the OLS algorithm. As
prediction is our main aim, we evaluate the different models based on predictive abil-
ity using cross-validation. Standard model selection approaches, such as evaluating
Akaike’s information criterion (AIC) would be less practical due to the large number
of observations (Claeskens and Hjort 2008). In cross-validation, different parts of the
training data are consecutively held out from the model fitting and predicted based
on the remaining data. The prediction error is then assessed by the root mean squared
error (RMSE) averaged over all parts.
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Table 1. Estimated parameters for the temperature pre-

diction models. The time constant τ is measured in min-

utes.

Variable Class I motor Class II motor

Constant 2.7 ·101 2.4 ·101

TaIn 8.4 · 10−1 7.8 · 10−1

Power2 (τ = 28) −3.5 · 10−3 1.0 · 10−3

Speed (τ = 28) −4.0 · 10−1 −9.6 · 10−2

Speed2 (τ = 28) 5.7 · 10−3 2.2 · 10−3

Torque2 (τ = 28) 9.9 · 10−3 5.4 · 10−3

In our setting, the part of the training data held out could comprise either the data
for one whole vessel, one motor class of a vessel, or one individual motor. Due to dif-
fering operating modes and varying sea conditions, the variability in motor operation
between different vessels is substantially larger than the variability between motors
within the same vessel. The two class II motors are, in addition, likely to run in the
same mode within the same vessel. As we specifically aim to assess how the predictive
performance generalises to a previously unobserved vessel, we perform cross-validation
leaving out each vessel, i.e. the single class I motor and the pair of class II motors,
in each cross-validation iteration. The cross-validation scheme therefore holds out all
three motors in one vessel for each iteration. As the amount of available data varies
between vessels, a weighted version of the root mean squared error is used. The vessel-
specific weights equal the proportion of observations for each vessel of the total data,
separately for the motor classes I and II. We further assume the physical systems of
the class I and II motors to be equal, but that they may run under different oper-
ating regimes. The same input variables are therefore used for all motors, but with
parameters estimated separately for the two motor classes.

We follow a forward and backward step-wise model selection strategy (Hastie, Tib-
shirani and Friedman 2001), testing increasingly complex models and comparing them
in terms of the cross-validated RMSE. The variables are included in the following
hierarchy:

(1) Cooling air inlet temperature
(2) Linear power
(3) Squared power
(4) Linear speed
(5) Squared speed
(6) Linear torque
(7) Squared torque
(8) Interaction between linear speed, power and torque

All power, speed, and torque terms were included as exponentially smoothed variables
as investigations showed that non-smoothed input variables always gave worse predic-
tion performance. Details on the separate cross-validation errors for each step, when
including different input variables, are provided in the Supplementary material. After
a final backward step, excluding the variables not improving the prediction, the final
model uses five input variables: cooling air inlet temperature, exponentially smoothed
squared power, linear and squared speed, and squared torque.

As part of the model selection procedure, a conditionally optimal time constant,
τ , was initially estimated separately for each input variable. To facilitate a physical
interpretation of the model, all τ values were fixed to the same value, found to be
τ = 28 min by minimising the cross-validation RMSE. The model with a common
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time constant was seen to give only slightly worse prediction performance than the
individual time constant model, see the Supplementary material for further details.
The class I and II motor model fits are summarised in Table 1. We note that the sign
of the estimated effect of the squared power differed between the models, which is
likely due to the high correlations between the different input variables. The adjusted
R2 of the two models is 0.941 and 0.931, respectively. This close match between our
predictive model and the observed data can be seen in the illustration in the left part
of Figure 2.

3.2. Fault detection algorithm

Given the prediction models for the normal state of the system, the second step is
to monitor the deviations between the observed temperature and the predicted tem-
peratures. We propose an online monitoring algorithm for the temperature deviations
based on the framework of Lorden and Pollak (2008) and Liu, Zhang and Mei (2017).
We further develop a novel tuning procedure to automatically select the parameters
of the monitoring algorithm.

The prediction models are trained on the mean temperature, but we monitor the
observed temperature deviations on the individual sensors to detect overheating events
as early as possible. For the fault detection algorithm, the aim is to detect, as quickly as
possible, whether any of the temperatures in N sensors suddenly rises to an abnormally
high level compared to the prediction. In our case, the number of sensors is equal to
the number of individual windings, N = 6.

We use the notation yj,t for the observed temperature of the individual sensor j =
1, . . . , N at time t, and ŷt for the predicted average temperature across the sensors at
time t produced by the models in Table 1. The deviations of the observed temperature
from the predicted temperature at time t, referred to as the residuals, are then given
by

ej,t = yj,t − ŷt, j = 1, . . . , N.

The goal is to detect whether the mean of the residual distribution for any of the
sensors has changed sufficiently far from 0 in the positive direction. Such a large
deviation is shown schematically in the right panel of Figure 2.

We monitor each sensor using a local monitoring statistic, zj,t, which is a function
of the temperature residuals of the jth sensor up until time t: ej,1, . . . , ej,t. We then
construct a global monitoring statistic for all sensors, Gt, by applying a set of filtering
or shrinkage functions, hj ≥ 0, on the local monitoring statistics of each sensor and
summing their individual contributions,

Gt =

N∑

j=1

hj(zj,t). (1)

Finally, the global monitoring statistic, Gt, is compared to an alarm threshold, b, where
the alarm is raised when the statistic exceeds the threshold value.

The detection algorithm is required to detect true faults quickly with as few false
alarms as possible and to detect faults that are only visible in a single sensor. At
the same time, we need the algorithm to be computationally efficient and conceptu-
ally simple. Further, it should also generalise to different motors and vessels without
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motor-specific tuning. As also stated earlier, the simplicity of the monitoring system is
important for the operator’s understanding of the system and for implementation, as
the monitoring system is coded in the on-board vessel system and must be able to run
in real-time. We specifically select the local monitoring statistic zj,t and the filtering
functions hj of the detection algorithm to comply with these criteria.

3.2.1. Choice of monitoring statistic

For the local monitoring statistic, we use the adaptive cumulative sum (CUSUM)
statistic introduced by Lorden and Pollak (2008). We choose the adaptive CUSUM
because of its simplicity and computational efficiency, in addition to a proven ability to
detect distributional changes of unknown magnitude quickly. Alternative monitoring
statistics include the standard CUSUM statistic (Page 1954, 1955), the EWMA control
chart (Roberts 1959) or other sequential change-point detection statistics (Basseville
and Nikiforov 1993).

We assume the residuals to be independent and normally distributed, such that the
adaptive CUSUM statistic is given by

zj,t = max

(
zj,t−1 + µ̂j,tej,t −

1

2
µ̂2
j,t, 0

)
, (2)

for each sensor j. In addition, the overall distribution of the residuals is standardised
to have a mean of 0 and a standard deviation of 1. The values µ̂j,t are adaptive means,
recursively estimated for each sensor, given by

µ̂j,t = max

(
sj,t
nj,t

, ρ

)
, sj,t =

{
sj,t−1 + ej,t−1, zj,t−1 > 0,

0, zj,t−1 = 0,
(3)

where nj,t = nj,t−1 + 1, if zj,t−1 > 0, and otherwise nj,t = 0, if zj,t−1 = 0, and
with initial values zj,0 = sj,0 = ej,0 = 0. Note that when sj,t = nj,t = 0, we define
sj,t/nj,t = 0.

The adaptive means and the monitoring statistic zj,t are therefore dependent on a
user-determined parameter, ρ > 0, representing the smallest relevant change. If there
is evidence that a change occurred, such that zj,t−1 > 0, the mean is estimated by a
recursively updated average. The update starts from a candidate change-point given
by the most recent time i where zj,i = 0 for 1 ≤ i ≤ t− 2. If there is no evidence of a
change, such that zj,t−1 = 0, the average is reset to 0. The statistic will further ignore
irrelevant changes when ρ is selected appropriately. When the monitoring statistic is
zero, zj,t−1 = 0, the consecutive value only increases, zj,t > 0, if ej,t > ρ/2.

The assumed normality and independence of the residuals is an oversimplification,
resulting in a misspecified model. But due to the large amounts of available training
data and the fact that the temperature faults of interest correspond to large changes
in the mean, the simplistic model still yields good results in practice. Further, the
threshold b is set based on the number of false alarms in the training data, irrespective
of the model assumption of the CUSUM statistic. The model misspecification therefore
does not result in loss of control of the false alarms, but rather speed of detection.
Given that the relevant changes in the means are relatively large, any improvement in
timeliness achieved by applying a more complex residual model appears to be small.

In the standard CUSUM, changes in the mean have to be pre-specified, and the
recursive estimation of the mean in the adaptive CUSUM is more flexible. The adaptive
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CUSUM is therefore less prone to degrading performance due to a misspecified µ
compared to the standard CUSUM, and it achieves two goals simultaneously: ρ may be
specified at the lowest possible level to filter out all small, non-relevant changes, while
at the same time maintaining near optimal detection speed for changes of mean greater
than ρ. This point is further discussed in Section 3.2.3. This feature is important when
only one fault is available for testing, as new faults will be different in terms of the size
of the change in mean. In the standard CUSUM, µ must be balanced between these
two goals, not being optimal for any of them. The standard CUSUM is also prone to
overfitting µ to the observed fault, suggesting that the adaptive CUSUM generalises
better to other vessels and faults.

3.2.2. Choice of global monitoring statistic

For the global monitoring statistic, we use the maximum over all sensors

Gt = max
j

(zj,t), j = 1, . . . , N, (4)

which is given by the order-thresholding filtering function, h(z) = z1{z ≥ z(1)}, where
z(1) is the largest order statistic or maximum of z1, . . . , zN . The order-thresholding
applied to the sum in Equation (1) truncates the terms not corresponding to the
maximum to zero. Alternative filtering functions such as hard- and soft-thresholding,
h(z) = z1{z ≥ a} and h(z) = max(z − a, 0), respectively, depend on an additional
constant a.

The max function is chosen to allow for quick detection of faults affecting only a
single sensor, i.e. emerging hotspots, as it is known to be more efficient than the sum
or average of sensors for such faults (Mei 2010; Xie and Siegmund 2013; Liu, Zhang
and Mei 2017). Soft- or hard-thresholding may yield faster detection speed for faults
affecting all sensors (Liu, Zhang and Mei 2017), but as the max filtering does not
introduce additional tuning parameters, it allows for better generalisability to new
and previously unobserved vessels. The fault detection algorithm is summarised in
Algorithm 1.

3.2.3. Setting the detection threshold and minimum change size

To apply the detection algorithm in practice, we are required to determine the de-
tection threshold, b, and the minimum change size, ρ. These parameters are tuned to
detect a fault as early as possible, while controlling the number of false alarms, and at
the same time setting ρ as low as possible without severely compromising the detection
speed. The latter counteracts overfitting due to the limited number of faults, only one
single incident, and can therefore improve generalisability.

The detection threshold, b, is set relative to the number of acceptable false alarms,
m, in the fault-free training data. We define a potential false alarm event as the
contiguous time-points where the statistic Gt raises above 0 for a certain period of
time, before going back to 0 again. What governs the threshold b is the maximum
value of Gt in each such region. To be precise, if Ij for j = 1, . . . , k denote the k
potential false alarm events in the training data, then the value of Gt at the peak over
each interval is given by Ĝj = maxi∈Ij Gi. A threshold can then be obtained by setting

b to the (m+ 1)th largest Ĝj . As the threshold depends on both ρ and m, we use the
notation b(ρ,m) when it is useful to make this dependence explicit.

The time of an alarm corresponds to the first time the monitoring statistic exceeds
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Algorithm 1 Maximised adaptive CUSUM for temperature fault detection

Input: ρ, b
1: t = zj,0 = sj,0 = nj,0 = 0 for j = 1, . . . , N .
2: while maxj zj,t < b do
3: t = t+ 1.
4: Input set of standardised temperature residuals (e1,t, . . . , eN,t).
5: for j = 1, . . . , N do
6: if zj,t−1 > 0 then
7: sj,t = sj,t−1 + ej,t−1.
8: nj,t = nj,t−1 + 1.
9: else

10: sj,t = nj,t = 0.
11: end if
12: µ̂j,t = max

(
sj,t
nj,t

, ρ
)

.

13: zj,t = max
(
zj,t−1 + µ̂j,tej,t − 1

2 µ̂
2
j,t, 0

)
.

14: end for
15: end while
Return: t

the threshold, denoted as a function of ρ and m by

A(ρ,m) = min{t ≥ 1 : Gt > b(ρ,m)}.

Given that F is the time of a true fault, detecting the fault as early as possible while
allowing m false alarms, can be formulated as maximising

T (ρ,m) = F −A(ρ,m),

with respect to ρ for a given m. As multiple values of ρ and corresponding thresholds
b(ρ,m) may achieve approximately the same time to failure T , we select the smallest
ρ maximising T within a user-specified error margin δ:

ρ̂(m) = min

{
ρ > 0 : max

ρ>0

{
T (ρ,m)

}
− T (ρ,m) ≤ δ

}
.

The corresponding threshold for a specific number of false alarms m is then given by
b(ρ̂,m). A grid search over ρ was used to find an approximately optimal ρ̂.

The error margin δ is introduced to reduce overfitting of ρ to the one single fault.
We experienced that an error margin of 1 second resulted in ρ being set too high for
possible future faults, because a slightly higher ρ resulted in a few seconds quicker
detection. With δ, one can specify, for example, that all detection times within 60
seconds of the optimal detection time are good enough. We found that a δ of three
minutes provided a decent counter-balance to maximally overfitting ρ to our single
fault case presented in the next section.
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4. Performance on real failure case

In this section, we present the results of the detection algorithm 1) applied to a real
overheating failure case. The failure occurred in one of the vessels available in the
training data, following the system described in Section 1.1, but outside the training
period. The upper panel of Figure 4 shows the residuals of the N = 6 temperature
sensors in the four hour period before the motor fails. The lower panel of Figure 4
shows in the same period the corresponding individual CUSUM statistics (gray lines)
and the maximised adaptive CUSUM statistic (black line) following Algorithm 1. The
time of the motor failure is indicated by the red line. The missing values in the residuals
and the CUSUM statistic are due to the motor being shut off, resulting in zero power,
and the subsequent initialisation of the exponentially smoothed variables (removing
30 minutes of observations). In the lower panel of Figure 4, the detection times prior
to the failure allowing for m = 0, 1, 2 and 3 false alarms in the training data are shown.
The adaptive CUSUM statistics are shown for ρ = 13, although the optimal alarm
for a given number of false alarms is set at different values ranging from 12.4 to 17.8,
obtained by the procedure described in Section 3.2.3.

If no false alarms are allowed in the training period, the fault can be detected 57
minutes before the motor failure (green line, corresponding to ρ = 17.8). The alarm is
raised when the mean temperature is 104.2◦C and the maximum temperature over the
six sensors is 111.3◦C. By allowing for one and two false alarm events in the training
period, the detection time remains approximately the same (56 minutes), but ρ may
be lowered to 16.2 and 12.4, respectively, following the tuning strategy in Section 3.2.3.
The lower ρ values improve the generalisability of the monitoring algorithm to new
faults. Finally, if we allow for three false alarms in the entire training period, the fault
may be detected already 86 minutes prior to the failure (blue line, corresponding to
ρ = 17.2). The alarm is then raised when the mean temperature is 91.0◦C and the
maximum temperature over the six sensors is 98.3◦C. Further allowing for four to ten
false alarms did not change the detecting time, but lowered the optimal ρ value.

5. Discussion

We have demonstrated how a data-driven approach of using past data and machine
learning can provide timely prediction of overheating in marine vessels. Based on
assessing a real failure case, our proposed alarm algorithm may detect a fault between
60 and 90 minutes before the actual occurrence and at temperatures well below the
current alarm limits, depending on the number of allowed false alarms. By using a
machine learning approach, one can capture predictive relationships, interactions or
feedback-loops, that may be unknown or non-intuitive to experts of the physical model.
Physical knowledge was only included in the model building step to guide the selection
and transformation of candidate input variables considered by the model.

The aim of this work was to use data from four vessels to create two models (class I
and II) that could be used on all vessels in the fleet. The model was hence trained on
the average winding temperature, while the monitoring algorithm itself is implemented
on each individual winding. It should therefore be noted that better performance could
probably be obtained by training winding-specific models. For all motors, the winding
temperatures had a variation of around 3–4◦C, which appears to be consistent for
each motor, but no pattern could be found across motors. The bias is, therefore, likely
caused by installation or manufacturing effects, and individual models for each winding
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Figure 4. a) The residuals of each of the six temperature sensors before the fault. b) The corresponding

adaptive CUSUM statistics per sensor zj,t (gray lines) and their maximum Gt (black lines). The detection
times prior to the fault for m = 0, 1, 2 accepted false alarms in the training data is indicated by the green

dashed line and m = 3 by the blue dashed line. The time of the motor failure is shown by the red line. For

illustrational purposes, the adaptive CUSUM statistics are shown for a single value, ρ = 13, though the alarms
are given for different values depending on m, ρ̂(m) = 17.8, 16.2, 12.4, 17.2 for m = 0, 1, 2, 3, following the

procedure described in Section 3.2.3.

would be able to filter out these biases and hence improve the monitor performance.
However, as these differences are motor-specific, this would require retraining of the
model for each new vessel.

A drawback of the model-based approach is that data is needed to build the models
for a specific cooling system configuration and motor type. Data is needed both for
building machine learning models, and for parameter identification in the case of a
physics-based model. The model cannot be implemented on a new configuration di-
rectly. However, we believe that the selection of parameters and methodology could
be applicable to systems similar to this particular class of identical vessels.

Based on a single fault, it may be difficult to assess how the probability of detection
and the detection time will generalise to other overheating events. Further assessments
of the procedure is therefore needed, both on more vessels and faults. Importantly, both
a larger number and a wider range of faults should be used to validate how well the
detection framework generalises beyond the current fault case. If a substantial number
of fault cases can be obtained, machine learning models may also be applied directly to
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predict alarms, instead of monitoring the deviation from the normal state. Additional
fault cases may also improve the estimates of the probability of detection and the
timeliness of our procedure.

For the prediction of the motor temperature, there were several models, or combi-
nations of input variables, that gave similar or identical prediction performance. It is
reasonable to expect that the exact ordering of the different models would change if
more data were included. The final model is likely to depend on the order of which
the input variables were included. Hence, there may be no one single preferred model,
clearly outperforming and superior to the rest. However, we aimed to select the fi-
nal model consistently by including the input variables lowering the prediction error,
while ensuring a parsimonious model. It should be noted that models including the
temperature of the air outlet of the cooling system in the model, gave a prediction
error in terms of RMSE that was lower by a factor of 0.5. The air outlet temperature
was strongly correlated with the winding temperatures, and hence has high predictive
power. Any normal or anomalous increase in winding temperature will, however, also
lead to an increase in the air outlet temperature. The main aim of the derived model
was to detect observed temperatures that are higher than predicted to raise an alarm.
Including air outlet temperature as a covariate inherently introduces a risk of masking
overheating cases, which was supported by the fact that the time to detect was not
reduced by including the air outlet temperature even though the nominal prediction
error (RMSE) of the model was significantly lower. The air outlet temperature was
therefore omitted from the final model.

More complex machine learning approaches may also be utilised in the prediction
step. This could include recurrent neural network and deep learning, such as the pop-
ular Long Short Term Memory (LSTM) models or Gated Recurrent Units (Hochreiter
and Schmidhuber 1997; Cho et al. 2014). These methods, however, require excessive
computational time and memory not available at the current on-board system imple-
mentation. Future work needs to assess whether such complex algorithms may improve
the predictive performance in the initial modelling step of our framework.
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Abstract

Motivated by a condition monitoring application arising from subsea engineering we
derive a novel, scalable approach to detecting anomalous mean structure in a subset of
correlated multivariate time series. Given the need to analyse such series efficiently we
explore a computationally efficient approximation of the maximum likelihood solution to
the resulting modelling framework, and develop a new dynamic programming algorithm
for solving the resulting Binary Quadratic Programme when the precision matrix of the
time series at any given time-point is banded. Through a comprehensive simulation study,
we show that the resulting methods perform favourably compared to competing methods
both in the anomaly and change detection settings, even when the sparsity structure of the
precision matrix estimate is misspecified. We also demonstrate its ability to correctly detect
faulty time-periods of a pump within the motivating application.

Keywords: Anomaly; Binary Quadratic Programme; Changepoints; Cross-correlation; Out-
liers.
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Figure 1: Pump data after preprocessing with four known segments of suboptimal operation
marked by a blue rug. The correlation between variables 1 and 2 is 0.89 and the pairwise
correlations between variables 3, 4 and 5 are all above 0.6.

1 Introduction

Modern machinery can be perplexingly complicated and interlinked. The interruption of one
machine may cause downtime of a whole operation, in addition to a repair being both costly,
time consuming and arduous. This has spawned an enormous interest in (remote) condition
monitoring of industrial equipment to detect deviations from its normal operation, such that
optimal uptime can be achieved and impending faults discovered before they occur. Overviews
of condition monitoring techniques for different equipment exist for pump-turbines (Egusquiza
et al., 2015), wind turbines (Tchakoua et al., 2014), and audio and vibration signals (Henriquez
et al., 2014), among others. A common theme is the decision problem of when the machinery is
running abnormally—a problem that lends itself well to statistical changepoint analysis.

The current work is motivated by a problem of detecting time-intervals (segments) of subop-
timal operation of an industrial process pump. We will refer to these segments as "anomalies"
or "anomalous segments", because they correspond to deviations from some predefined normal
pump behaviour. The pump is equipped with sensors that measure temperatures and pressures
over time at various locations. Other operational variables such as the flow rate and volume
fractions for the different fluids being pumped are also recorded. If present, the aim is to esti-
mate the start- and end-point of anomalies, as well as indicate which variables are anomalous.
This is useful information to the operators of the pump to pin-point the source of historical
problems and learn from it. Another reason for performing such an analysis is to create a clean
reference data set to train a model of the equipment’s baseline behaviour on, before deploying
the method for online condition monitoring. The particular data set we consider contains four
anomalies that have been manually labelled by the engineers based on retrospectively looking
for signs in the data of degrading performance.

The starting-point of our methodology is to assume that during normal operation of the
pump, the data follows a baseline stationary distribution, and during suboptimal operation, the
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mean of the distribution changes abruptly for some period of time before it reverts back to
the baseline mean. This is known as an epidemic changepoint model in the literature (Kirch
et al., 2015). A challenge with the pump data is that the mean changes as a consequence of
what is being pumped and other operating conditions in addition to suboptimal operation. To
decrease the dependence on the operating conditions and thus increase the signal from changes
due to suboptimal operation, we divide the variables into sets of state variables and monitoring
variables, and regress the monitoring variables onto the state variables (similar to Klanderman
et al. (2020)). The remaining five-variate time series of monitoring residuals are shown in Figure
1, where the known anomalies are marked on the time axis. Observe that the strength of
the known anomalies vary as well as which variables seem to be affected. It is also apparent
that the mean changes outside of the known anomalous segments. Detecting and estimating
these segments is also important as they may correspond to previously unknown anomalies or
constitute data for which the current model between state and monitoring variables fit poorly,
and hence point to how it should be improved.

The pump data after preprocessing also exhibit strong cross-correlation due to the proximity
of the sensors, with the correlation of variables 1 and 2 being 0.89 and the pairwise correlations
between variables 3, 4 and 5 all being above 0.6. Most existing methods for detecting a change
or anomaly in a subset of variables ignore cross-correlation (though see Wang and Samworth,
2018). If not accounted for, however, cross-correlation will hamper the detection of more subtle
anomalies as illustrated by the simulated example in Figure 2. The point of doing multivariate
changepoint detection is to borrow strength between variables to detect smaller changes than
would be possible if each variable were considered separately, and including cross-correlation
if sufficiently strong will increase the power of detection. This is particularly true for sparse
changes, which has also been observed by Liu et al. (2019).

Our main methodological contribution is therefore to develop a novel test statistic based on a
penalised cost approach for detecting multiple anomalies/epidemic changes in a subset of means
of cross-correlated time series. The test is designed to be powerful for both sparse and dense
alternatives, as well as to be computationally fast and scalable. This is crucial for our method to
also be useful for anomaly detection problems of higher dimensionality than our process pump
example. Anomalies are then detected by using the test within a PELT-type algorithm Killick
et al. (2012) to optimise exactly over all possible start- and end-points of anomalies. We also
show how the same ideas can be applied to the related classical multiple changepoint problem
where there is no baseline behaviour.

Through the work on making the method scalable, we derive an algorithm which may be of
independent interest within combinatorial optimisation. Our test statistic is an approximation
to the maximum likelihood solution of our problem, formulated as what is known as an un-
constrained Binary Quadratic Program (BQP). We show that such optimisation problems can
be solved exactly by a dynamic programming (DP) algorithm scaling linearly in the number of
variables, p, if the matrix in the quadratic part of the objective function is sparse in a banded
fashion. In the anomaly detection problem, this corresponds to having a banded precision ma-
trix. We present a simple pre-processing step for obtaining a banded estimate of the precision
matrix of our data, and show empirically that detecting the changepoints using such an esti-
mate leads to gains in power over methods that ignore cross-correlation even when the banded
assumption is incorrect.

A further challenge in many applications, such as the pump data of Figure 1, is the pres-
ence of outliers. If left unattended, it is well-known that they will interfere with the detection
of changes (Fearnhead and Rigaill, 2019). To handle outliers, we incorporate the distinction
between point and collective anomalies, introduced in the CAPA (Collective And Point Anoma-
lies) and MVCAPA (MultiVariate CAPA) methods of Fisch et al. (2019a,b). A point anomaly
is defined as an anomalous segment of length one—a single anomalous observation—while a
collective anomaly is an anomalous segment of length two or longer. This distinction enables
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Figure 2: Modelling cross-correlation increases detection power for a fixed Type I error probabil-
ity, especially for sparse changes. Both plots show the same set of 1000 simulated observations
from a 10-variate Gaussian distribution with a global constant correlation of 0.5, containing
three collective anomalies at t ∈ (50, 100], (333, 358], (900, 1000], affecting the means of variables
{6, 10}, {1, . . . , 10} and {9}, respectively, and 12 point anomalies affecting two random variables
each. The left plot displays the estimates of collective and point anomalies of our method, which
incorporates cross-correlations, while the right plot shows estimates when the method ignores
cross-correlations. As both methods were tuned to achieve 0.05 probability of a false positive
under the global correlation null model, the two sparse anomalies are not detected in the right
plot as a trade-off with error control.

the method to classify sporadic outliers as point anomalies rather than confusing them with a
collective anomaly. We call our anomaly and changepoint detection algorithms CAPA-CC and
CPT-CC respectively, short for Collective And Point Anomalies in Cross-Correlated data and
ChangePoinTs in Cross-Correlated data, respectively.

To the best of our knowledge, there are no other methods designed specifically for the
multiple point and collective anomaly detection problem in multivariate, cross-correlated data
with both sparse and dense anomalies. Current approaches to detect collective anomalies assume
independence across series (Fisch et al., 2019b; Jeng et al., 2013). Alternatively, methods like
Kirch et al. (2015) model correlated series, but focus on detecting changes in the cross-correlation.

For the general changepoint problem of a sparse or dense change in the mean, the lit-
erature is mostly concentrated on methods that either allow for sparse changes but assume
cross-independence (Xie and Siegmund, 2013; Jirak, 2015; Cho and Fryzlewicz, 2015; Cho, 2016;
Bardwell et al., 2019), or allow cross-dependence but assume changes are dense (Horváth and
Hušková, 2012; Li et al., 2019; Bhattacharjee et al., 2019; Westerlund, 2019). The inspect method
of Wang and Samworth (2018) is a notable exception from this rule as it is designed to estimate
sparse changes in the mean of potentially cross-correlated data. Whilst general changepoint
methods can also be used for the anomaly detection problem, some power is expected to be lost
as there is no assumption of a shared baseline parameter.

The rest of the paper is organised as follows: We first describe the anomaly and changepoint
detection problems in detail in Section 2, before considering the anomaly detection problem in
detail in Section 3. Particular focus is put on the single collective anomaly case and our BQP
solving algorithm for approximating the maximum likelihood solution. We then briefly describe
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how the same ideas can be applied to the general changepoint detection problem in Section
4, In Section 5, we cover a useful strategy for robustly estimating the precision matrix with
a given sparsity structure, and Section 6 contains an extensive simulation study for assessing
the performance of our methods. We conclude by presenting the analysis of the pump data in
Section 7.

2 Problem description

Suppose we have n observations {xt}nt=1 of p variables xt = (x
(1)
t , . . . x

(p)
t ), where each xt has

mean µt and a common precision matrix Q encoding the conditional dependence structure
between the variables. Our interest is in either detecting collective anomalies or changepoints
that are characterised by a change in the mean of the data. We will first set up the anomaly
detection problem, before describing the changepoint problem in terms of it.

In our anomaly detection problem, segments of the data will be considered anomalous if the
mean µt is different from a baseline mean µ0. Let K be the number of anomalous segments,
where the kth anomaly, for k = 1, . . . ,K, starts at observation sk + 1, ends at observations ek,
and affects the components in a subset Jk ⊆ [p]. So, the model assumes that the mean vectors
µt are given by

µ
(i)
t =





µ
(i)
1 if s1 < t ≤ e1 and i ∈ J1,

...
µ

(i)
K if sK < t ≤ eK and i ∈ JK ,

µ
(i)
0 otherwise,

(1)

where ek ≤ sk+1, such that no overlapping anomalous segments are allowed. In some cases, one
may also be given information about the minimum and maximum segment length of an anomaly,
l ≥ 1 and M > l, respectively, such that l ≤ ek − sk ≤ M for all k. Our aim is to infer the
number of anomalies K, as well as their locations within the data (sk, ek,Jk)

K
k=1 together with

the anomalous means µ(i)
k , for i ∈ Jk, in a computationally efficient manner.

In the corresponding changepoint problem, on the other hand, there is no concept of a
baseline mean. It is thus the special case of (1) where the end of a segment is also the start
of a new one, i.e., ek = sk+1 and eK = n. To distinguish the two problems, we will denote
the changepoints as τk := sk in the changepoint problem. The aim can therefore be stated as
estimating the number of changepoints K, their locations (τk,Jk)

K
k=1, and the segment means

µk, for k = 0, . . . ,K.
As is common, in the anomaly detection problem, we assume that the baseline parameter µ0

is known and for both problems we assume that the precision matrix Q is known. In practice,
these will be estimated from the data using robust statistical methods described in Section 5.
Later, to enable quick computation, we will also assume that Q or an estimate of Q is sparse
in a banded fashion. A sparse precision matrix corresponds to cases where only a few of the
variables are conditionally dependent.

3 Detecting anomalies

3.1 A single collective anomaly

In this section, we consider the anomaly detection problem described in Section 2 forK ≤ 1. Our
approach is to model the data as being realisations of multivariate Gaussian random variables,
independent over time, and to use a penalised likelihood approach to detect an anomaly.

We will use the following notation: For a p-vector x and set J ⊆ [p], x(J) := (x(i))i∈J and
x(J) :=

(
x(i)I{i ∈ J}

)p
i=1

, where I{i ∈ J}) is the indicator function. For a matrix X, XJ,K
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denotes the sub-matrix of rows J and columns K. Both −J and Jc refer to the complement
of a set J. The k-subscripts enumerating the anomalies/changepoints will be skipped when the
referenced anomaly or changepoint is clear from the context.

Define the cost of introducing an anomaly from time-point s+ 1 to e in variables J as twice
the negative log-likelihood of multivariate Gaussian data,

C
(
x(s+1):e,µ(J)

)
= −2

e∑

t=s+1

log f (xt|µ(J))

∝
e∑

t=s+1

(xt − µ(J))
ᵀ
Q (xt − µ(J)) . (2)

Now, for ease of presentation, without loss of generality we assume µ0 = 0. Then the log-
likelihood ratio statistic of the observations x

(J)
(s+1):e being anomalous is given by

S(s, e,J) = C(x(s+1):e,0)−min
µ(J)

C
(
x(s+1):e,µ(J)

)
. (3)

We refer to S(s, e,J) as the saving of allowing the observations x
(J)
(s+1):e to have a different mean

than 0. In a maximum likelihood spirit, the aim is to maximise the savings S(s, e,J) over start-
points s, end-points e, and subset J, and infer the anomalous segment thereof. However, as we
vary J we are optimising over differing numbers of means in the anomalous segment – and the
savings will always increase as we optimise over more parameters. One way of dealing with this
is to introduce a penalty that is the function of the number of anomalous variables, P (|J|), and
maximise the penalised savings in stead. This gives us the following anomaly detection statistic:

S := max
l≤s−e≤M

S(s, e) := max
l≤s−e≤M

max
J

[
S(s, e,J)− P (|J|)

]
. (4)

Recall that l and M is the minimum and maximum segment length, respectively. An anomaly
is declared if (4) is positive, and the maximising (s, e,J) is a point-estimate of the anomaly’s
position in the data.

Throughout this article, we use a piecewise linear penalty function of the form

P (|J|) = min(αsparse + β|J|, αdense) =

{
αsparse + β|J|, |J| < k∗

αdense, |J| ≥ k∗
, (5)

where k∗ = (αdense − αsparse)/β. We will refer to |J| < k∗ as being in the sparse regime and
|J| ≥ k∗ as being in the dense regime. Such a penalty function ensures that our method can be
powerful against both sparse and dense alternatives. In addition, we can apply the results from
Fisch et al. (2019b) where it is shown that, if our modelling assumptions are correct, setting
αdense = p+ 2

√
pψ + 2ψ, αsparse = 2ψ and β = 2 log(p), for ψ = log(n), results in a false positive

rate that tends to 0 as n grows. Furthermore Fisch et al. (2019b) show that scaled versions of
these rates are appropriate in many situations where the modelling assumptions do not hold,
such as when there is dependence over time.

Furthermore, note that [p] is always the maximiser in the dense regime, and that β is the
additional penalty for adding an extra variable to the anomalous subset in the sparse regime.
We will exploit these properties when deriving an efficient optimisation algorithm in Section 3.2.

To compute the anomaly detection statistic S, we need the maximum likelihood estimator
(MLE) µ̂(J) of µ(J), where the means of variables j ∈ J are allowed to vary freely while the
others are restricted to 0. Optimising the multivariate Gaussian likelihood (2) with respect to
such a subset restricted mean results in the following MLE for the mean components in J:

µ̂
(J)
(s+1):e = x̄

(J)
(s+1):e + Q−1

J,JQJ,−Jx̄
(−J)
(s+1):e. (6)
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The corresponding p-vector µ̂(J) is constructed by placing µ̂(J) at indices J and 0’s elsewhere.
Finally, putting the MLE back into the expression for the saving, and suppressing the subscripts
(s+ 1) : e to not clutter the display, gives us that

S(s, e,J) = (e− s)(2x̄− µ̂(J))
ᵀ
Qµ̂(J). (7)

Unfortunately, the complicated form of the MLE (6) means that the number of operations
required for finding the exact maximum penalised saving over subsets J scales on the order of
O(2p). The optimisation problem is not only combinatorial, but also nonlinear, and as far as
we know, there is no reformulation of the saving 7 that would make the problem notably more
tractable. We thus opt for an approximation to the saving 7 to achieve scalability.

3.2 Approximate savings for anomaly detection

Our idea for a computationally efficient approximation of the subset-maximised penalised savings
S(s, e), is to replace the MLE in (7) with the subset-truncated sample mean,

x̄(J) = x̄ ◦ u, (8)

where u = (I{i ∈ J})pi=1 and ◦ is the element-wise (Hadamard) product. That is, under the
sparse regime, we aim to maximise the approximate penalised saving;

S̃(s, e) := max
J

[
S̃(s, e,J)− P (|J|)

]
= max

J

[
(e− s)(2x̄− x̄(J))

ᵀ
Qx̄(J)− β|J|

]
− αsparse. (9)

Under the dense regime, the exact maximum is given by S(s, e, [p])− αdense.
An important motivation for using x̄(J) is that finding S̃(s, e) corresponds to what is known

as a binary quadratic program (BQP). The unconstrained version of such optimisation problems
are of the form

max
u∈{0,1}p

u
ᵀ
Au + u

ᵀ
b + c, (10)

where A is a real, symmetric, (p× p)-dimensional matrix, b is a real, p-dimensional vector and
c is a real scalar. BQPs are NP-hard in general (Garey and Johnson, 1979), even if A is positive
definite. If A is r-banded, however, we show that BQPs can be solved with O(p2r) operations.
Proposition 1 confirms that maxJ[S̃(s, e,J)− P (|J|)] is indeed a BQP.

Proposition 1. Let α, β ≥ 0, x̄ ∈ Rp and x̄(J) = u ◦ x̄, where u is a binary vector with 1 at
positions J and 0 elsewhere. Then solving

max
J

[
(e− s)(2x̄− x̄(J))

ᵀ
Qx̄(J)− β|J|

]
− α (11)

corresponds to a BQP with A = −(e− s)x̄x̄
ᵀ ◦Q, b = 2(e− s)(x̄ ◦Qx̄)− β and c = −α.

To explain the dynamic program (Algorithm 1) for solving the BQP when the precision
matrix Q, and hence A, is r-banded, it is illustrative to consider the case of r = 1. The key
idea is that if we cycle through the variables in turn, then the choice of which of the variables
d, . . . , p are anomalous will depend on the variables 1, . . . , d − 1 only through whether variable
d− 1 is anomalous or not. Thus we can obtain a recursion by considering these two possibilities
separately.

In the case of r = 1, the BQP for maxJ[S̃(s, e,J)− P (|J|)] is given by

max
u∈{0,1}p

p∑

d=1

(bd +Ad,d)ud + 2

p∑

d=2

Ad,d−1udud−1 + c, (12)

where Ad,i = (e − s)Qd,ix̄dx̄i for i = d, d − 1, bd = 2(e − s)x̄d
∑d+1

i=d−1Qd,ix̄i − β, and c = −α.
Let S̃1(d) and S̃0(d) be the maximal approximate penalised savings of variables 1, . . . , d ≤ p
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S̃(0)

S̃0(1) S̃1(1)

S̃00(2) S̃10(2) S̃01(2) S̃11(2)

S̃00(3) S̃10(3) S̃01(3) S̃11(3)

S̃00(4) S̃10(4) S̃01(4) S̃11(4)

S̃00(p) S̃10(p) S̃01(p) S̃11(p)

Figure 3: The unbalanced binary tree structure of the dynamic program for solving (11) for
1-banded Q and fictitious data. The blue and red nodes refer to conditioning on whether the
current variable/level d is anomalous (ud = 1) or not anomalous (ud = 0), respectively. At each
level, the darker coloured nodes are the selected parent within every colour group, while the
edges correspond to the step of growing children nodes. Observe that the maximum value to
the BQP in this example is S̃00(p), with argument u = (1, 1, 0, 0, . . . , 0).

conditional on variable d being anomalous (ud = 1) or not (ud = 0) for a fixed s and e. Moreover,
we write S̃(0,u)(d) and S̃(1,u)(d) for u = 0, 1 when additionally conditioning on variable d − 1

being 0 or 1. Then, by initialising from S̃(0) := c, S̃0(1) = S̃(0) and S̃1(1) = S̃(0) + b1 + A1,1,
the following two-stage recursion holds for d = 2, . . . , p:

S̃(0,u)(d) = S̃u(d− 1),

S̃(1,u)(d) = S̃u(d− 1) + bd +Ad,d + 2uAd,d−1,
(13)

for u = 0, 1, and
S̃u(d) = max

(
S̃(u,0)(d), S̃(u,1)(d)

)
, (14)

such that max(S̃0(p), S̃1(p)) = maxJ[S̃(s, e,J) − P (|J|)] when r = 1. Note that the computa-
tional complexity of finding the optimum in this case is only O(p).

To extend the recursion to more general precision matrices, observe that the dynamic pro-
gram given by (13) and (14) can be described by an unbalanced binary tree (Figure 3). Initial-
isation occurs at levels 0 and 1 of the tree. Thereafter, two selected nodes at level d − 1 grow
children nodes according to (13), before two of the four nodes at level d is selected as parents
for the next level by the max operation in (14). The path from the maximum node at the final
level back to the root encodes the optimal u. In the following, we will refer to the vector of 0’s
and 1’s along the path from a certain node back up to the root as the "position" or "argument"
of a node.

By using the tree description, it is easier to generalise the algorithm to any neighbourhood
structure of each variable d. When r = 1, we only have to consider the two options of variable
d−1 being 0 or 1 at every step d, whereas for a general band, we have to consider all combinations
of variables d− r, . . . , d− 1 being 0 or 1. A further adaptation to the precision matrix at hand
can be made by excluding those variables among d−r, . . . , d−1 that will never be visited again,
at each step d. To be precise, let us define the neighbours of variable d by Nd := {i : Ad,i 6= 0},
and the potential lower neighbours of d by P<d := {max(1, d − r), . . . , d − 1} for d ≥ 2 and
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Figure 4: An example 4-banded A matrix where the diagonal is black, other non-zero elements
are gray, and zero-elements are white. The red region illustrates how the extended neighbours of
d = 6 are found; the column indices of the red region correspond to P<6 = {2, 3, 4, 5}, but variable
3 can be excluded as it is not in any of the coming neighbourhoods, making M6 = {2, 4, 5}. The
other extended neighbourhoods in this example are M1 = ∅, M2 = {1}, M3 = {2}, M4 = {2, 3},
M5 = {2, 4}, M7 = {4, 5, 6} and M8 = {7}.

P<1 := ∅. At each step d, we have to condition on all 0-1-combinations of the variables in

Md := P<d \
(
∪d+r
i=d Ni

)c
= P<d ∩

(
∪d+r
i=d Ni

)
. (15)

We call the variables in Md the extended neighbours of d. See Figure 4 for an example of how
the Md’s are constructed.

To accomodate for more complicated neighbourhood structures, we have to extend the scalar
indicators u needed when r = 1, to vector indicators ud ∈ {0, 1}|Md| that give us the position of
a node in the tree relative to Md. I.e., ud tells us which extended neighbours of d are on (1) or
off (0). At each level d, all 2|Md| possible on-off-combinations must be conditioned on, resulting
in 2|Md|+1 recursive updates, given by

S̃(0,ud)(d) = S̃ud
(d− 1)

S̃(1,ud)(d) = S̃ud
(d− 1) + bd +Ad,d + 2u

ᵀ
dAd,Md

,
(16)

where (0,ud) and (1,ud) indicates the positions of the 0-child and 1-child nodes relative to Md.
All these children nodes constitute the nodes at level d, and we will refer to them by {S̃(d)}.

The parent-selecting step in the general case also becomes more complex since the extended
neighbourhoods can evolve in many different ways. To explain this step in detail, we use the
notation position(S̃(d)) to refer to the 0-1-vector that gives the position of a given node in our
binary tree representation of the algorithm. For example, position(S̃10(4)) = (1, 1, 0, 1) in Figure
3. Now the parent for each ud are determined by maximising over the variables that will never
be visited again;

S̃ud
(d− 1) = max

v∈V
S̃v(d− 1), (17)

where V = {v ∈ positions({S̃(d − 1)}) : v(Md) = ud} is the set of positions at level d − 1 that
match the on-off pattern indicated by ud relative to Md.

The final algorithm is summarised in Algorithm 1 and 2. Note that we also keep track of
the minimum number of anomalous variables at each level d through the term k. In this way,
the recursions can be stopped as soon as the anomaly is guaranteed to lie in the dense regime.
For an r-banded matrix the computational complexity is bounded by O

(∑p
d=1 2|Md|

)
≤ O(p2r),

and if the anomaly is estimated as dense, the number of operations may be substantially less.

9 119



Algorithm 1 Dynamic programming BQP solver for banded matrices

Input: A, b, c, {Md}pd=1, k
∗

1: d = 1, k = 0, S̃(0) = c.
2: while d ≤ p and k ≤ k∗ do
3: for ud ∈ {0, 1}|Md| do
4: V = {v ∈ positions({S̃(d− 1)}) : v(Md) = ud}.
5: S̃ud

(d− 1) = maxv∈V S̃v(d− 1).
6: S̃(0,ud)(d) = S̃ud

(d− 1).
7: S̃(1,ud)(d) = S̃ud

(d− 1) + bd +Ad,d + 2u
ᵀ
dAd,Md

.
8: end for
9: k = minv∈positions{S̃(d)} v

ᵀ
1.

10: d = d+ 1.
11: end while
12: J̃ = argmax{S̃(p)}.
13: S̃ = max{S̃(p)}.
14: return: S̃, J̃.

Algorithm 2 The approximate penalised saving for anomaly detection used in CAPA-CC

Input: x̄, Q, {Md}pd=1, β, αsparse, αdense, k∗, e, s.
1: A = −(e− s)x̄x̄

ᵀ ◦Q.
2: b = 2(e− s)(x̄ ◦Qx̄)− β.
3: c = −αsparse
4: S̃, J̃ from Algorithm 1 with input (A, b, c, {Md}pd=1, k

∗)
5: S = S(s, e, [p])− αdense.
6: if S̃ ≥ S return: S̃, J̃.
7: else return: S, [p].

3.3 Properties of the approximation

Our main evaluation of the approximation’s performance is done through simulations, where
in Section B.1 in the Supplementary Material we demonstrate that the approximation and the
MLE give almost equal results for low p. Some properties regarding how S̃(s, e) compares to
S(s, e), however, can be derived theoretically.

Firstly, under the dense penalty regime, the approximate MLE is equal to the MLE because
the optimal J is [p] in both cases, making µ̂(J) = x̄. Thus, we are only approximating the
savings under the sparse penalty regime.

Secondly, S̃(s, e) ≤ S(s, e) for all start- and end-points s and e. This follows by definition of
the MLE, which is present in S(s, e); µ̂(J) is the minimiser in (3), and consequently, no other
estimator can make the saving larger. Using the approximation will therefore not increase the
probability of falsely detecting anomalies. The only effect it may have is a reduction in power.

In addition to the lower bound of 0 on the approximation error, Proposition 2 gives an upper
bound which is useful for distilling what drives a potential decrease in performance. The proof
is given in Section A.2 in the Supplementary Material.

Proposition 2. Let W(J) be the matrix where W(J)J,−J = Q−1
J,JQJ,−J and is 0 elsewhere, and

Ĵ = argmaxJ

[
S(s, e,J)− P (|J|)

]
. Then the following bound on the approximation error holds

for all s < e:
0 ≤ S(s, e)− S̃(s, e) ≤ (e− s)λmax

(
QW(Ĵ)

)
‖x̄(s+1):e(Ĵ

c)‖2. (18)

The right-hand side of (18) indicates that the worst-case scenarios for our approximation are
sparse changes in strongly correlated data. The right-hand side of (18) suggests that the relative
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approximation error will be largest for sparse changes in strongly correlated data—as this is the
situation that ‖x̄(s+1):e(Ĵ

c)‖2 is largest (see Section A.2 in the Supplementary Material). The
simulation results in Section B.1 in the Supplementary Material support this conclusion that the
greatest difference in performance occurs when there is a sparse change in strongly correlated
data, although the difference is small in the tested settings.

3.4 Multiple point and collective anomalies

We can extend the described method for detecting a single collective anomaly to detecting
multiple collective anomalies, and also to allow for point anomalies within the normal segments.
To incorporate point anomalies, we follow the approach of Fisch et al. (2019a,b) by defining
point anomalies as collective anomalies of length 1. Thus, the optimal approximate saving of a
point anomaly at time t can be defined as

S̃′(t) = max
J

[
S̃(t, t,J)− β′|J|

]
. (19)

In accordance with Fisch et al. (2019b), we set β′ = 2 log p+ 2ψ, where ψ = log n as in Section
3.1. As for the collective anomaly penalty function, β′ can be scaled by a constant factor to
achieve appropriate error control.

We can now extend our penalised likelihood framework. The estimates for the collective
anomalies, K̃ and (s̃k, ẽk, J̃k) for k = 1, . . . , K̃, and point anomalies, Õ and J̃t for t ∈ Õ, can
then be obtained by minimising the penalised cost

max
K∈[bn/lc],sk,ek

K∑

k=1

S̃(sk, ek) + max
O⊆[n]

∑

t∈O
S̃′(t), (20)

subject to êk − ŝk ≥ l ≥ 2, êk ≤ ŝk+1 and (∪k[ŝk + 1, êk]) ∩O = ∅.
The optimisation problem (20) can be solved exactly by a pruned dynamic program, using

ideas from the PELT algorithm of Killick et al. (2012). Defining C(m) as the maximal penalised
approximate savings for observations x1:m, the basis for our PELT algorithm is the following
recursive relationship:

C(m) = max

(
C(m− 1), max

0≤t≤m−l

[
C(t) + S̃(t,m)

]
, C(m− 1) + S̃′(t)

)
, (21)

for C(0) = 0. The first term in the outer maximum corresponds to no anomaly at m, the second
term to a collective anomaly ending at m, and the third term to a point anomaly at m.

The computationally costly part of (21) is the maximisation over all possible starting-points
t in the term for collective anomalies. Due to this term, the runtime of this dynamic program
scales quadratically in n. If one specifies a maximum segment length M , however, the runtime
is reduced to O(Mn) at the risk of missing collective anomalies that are longer than M . The
PELT algorithm is able to prune those t’s in the term for the collective anomalies that can never
be the maximisers, thus reducing computational cost whilst maintaining exactness. Proposition
3 gives a condition for when t can be pruned. The proof is given in the Supplementary Material.

Proposition 3. If there exists an m ≥ t− l such that

C(t) + S̃(t,m) + αdense ≤ C(m) (22)

then, for all m′ ≥ m+ l, C(m′) ≥ C(t) + S̃(t,m′).

Proposition 3 states that if (22) is true for some m ≥ t − l, t can never be the optimal
changepoint for future times m′ ≥ m+ l, and can therefore be skipped in the dynamic program.
Killick et al. (2012) shows that if the number of changepoints increases linearly in n, then such
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a pruned dynamic program can scale linearly. In the worst case of no changepoints, however,
the scaling is still quadratic in n.

Calculating C(n) in (21) by PELT with savings computed from Algorithm 2 constitutes our
CAPA-CC algorithm.

4 Changepoint detection

In this section, we derive a test statistic for the single changepoint detection problem that
utilises the approximation used for anomaly detection. CPT-CC detects multiple changepoints
by embedding the test for a single changepoint within binary segmentation or a related algorithm,
such as wild binary segmentation Fryzlewicz (2014) or seeded binary segmentation Kovács et al.
(2020).

Recall that the single changepoint problem is like the anomaly detection problem, with
the exception that e = n and all means are unknown. In addition, we use τ to denote the
changepoint. Without loss of generality assume the sample mean for each series is 0. To be able
to use the same approximation as in the anomaly detection case we will base our cost on the
log-likelihood under the assumption that the mean of the data is 0 for each series if there is no
change. The resulting changepoint saving for a fixed τ and J is given by

S(τ,J) : = C (x1:n,0)−min
µ(J)

C (x1:τ ,µ(J))−min
µ(J)

C
(
x(τ+1):n,µ(J)

)
(23)

= S(1, τ,J) + S(τ + 1, n,J),

where C is defined in (2) and S(s, e,J) in (3). Note that J is the same both before and after a
changepoint to restrict the change vector µ1−µ0 to be nonzero only in J. Mirroring the anomaly
detection case, we obtain our changepoint test statistic by subtracting the penalty function and
maximising over τ and J;

max
l≤τ≤n−l

S(τ) := max
l≤τ≤n−l

[
max

J
S(τ,J)− P (|J|)

]
, (24)

where l ≥ 1 is the minimum segment length as before.
Next, we once again replace the MLE of µ(J) with the subset-truncated sample mean, x̄(J),

defined in (8). The optimal approximate penalised savings for the single changepoint problem
is thus given by

S̃(τ) = max
J

[
τ(2x̄1 − x̄1(J))

ᵀ
Qx̄1(J) + (n− τ)(2x̄2 − x̄2(J))

ᵀ
Qx̄2(J)− β|J| − α

]
, (25)

where x̄1 := x̄1:τ and x̄2 := x̄(τ+1):n. A changepoint is detected when maxτ S̃(τ) > 0. Proposi-
tion 4 confirms that (25) is also a BQP, such that Algorithm 1 can be used to find the optimum
efficiently for a banded precision matrix Q. Algorithm 3 summarises the method.

Proposition 4. Let α, β ≥ 0, x̄ ∈ Rp and x̄(J) = u ◦ x̄, where u is 1 at J and 0 elsewhere.
Then solving (25) corresponds to a BQP with c = −α and

A = −τ(x̄1x̄
ᵀ
1 ◦Q)− (n− τ)(x̄2x̄

ᵀ
2 ◦Q)

b = 2τ(x̄1 ◦Qx̄1) + 2(n− τ)(x̄2 ◦Qx̄2)− β.

5 Robustly estimating the mean and precision matrix

In practice we need an estimate Q, and, in the anomaly problem, of µ0, as they are very rarely
known a priori. We will use the median of each series x

(i)
1:n to estimate µ

(i)
0 . To estimateQ we
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Algorithm 3 The approximate penalised saving for changepoint detection used in CPT-CC

Input: x̄, Q, {Md}pd=1, β, αsparse, αdense, k∗, e, s.
1: A = −τ(x̄1x̄

ᵀ
1 ◦Q)− (n− τ)(x̄2x̄

ᵀ
2 ◦Q)

2: b = 2τ(x̄1 ◦Qx̄1) + 2(n− τ)(x̄2 ◦Qx̄2)− β.
3: c = −αsparse
4: S̃, J̃ from Algorithm 1 with input (A, b, c, {Md}pd=1, k

∗)
5: S = S(s, e, [p])− αdense.
6: if S̃ ≥ S return: S̃, J̃.
7: else return: S, [p].

use a robust version of the GLASSO algorithm (Friedman et al., 2008). This algorithm takes
as input an estimate of the covariance matrix, Σ̂, and an adjacency matrix W. An estimate
Q̂(W) of Q is then computed by maximising the penalised log-likelihood

log det Θ− tr(Σ̂Θ)− ‖Γ ◦Θ‖1 (26)

over non-negative definite matrices Θ, where we set γij = 0 if wij = 1 or i = j and γij = ∞
(or some very high number) otherwise. This can be seen as producing the closest estimate of Q

based on Σ̂
−1

subject to the sparsity pattern imposed by W. To compute Q̂ efficiently, we use
the R package glassoFast (Sustik and Calderhead, 2012).

As input for Σ̂ we use an estimate, S, of the covariance in the raw data that is robust to the
presence of anomalies. Our robust estimator is constructed from the Gaussian rank correlation
and the maximum absolute deviation, as suggested by Öllerer and Croux (2015). To be precise,
let mad(x(i)) be the maximum absolute deviation of all measurements of variable i, and

rGauss(x
(i),x(j)) := r

(
Φ−1

(
R
(
x(i)
)
/(n+ 1)

)
,Φ−1

(
R
(
x(j)

)
/(n+ 1)

))
(27)

be the Gaussian rank correlation between variables i and j, where r is the sample Pearson
correlation, and R

(
x
)
is a vector of the ranks of each xt within x. Then the robust pairwise

covariances are estimated by

sij = mad
(
x

(i)
1:n

)
mad

(
x

(j)
1:n

)
rGauss

(
x

(i)
1:n,x

(j)
1:n

)
. (28)

For changepoint detection, we input S/2, where S is computed on the differenced data.
A number of different considerations can go into choosing W. From a modelling perspective,

selecting W corresponds to deciding on a model for the conditional independence structure;
wij = 0 means variables are assumed to be conditionally independent, while wij = 1 means
variables are conditionally dependent. For spatial data, for example, the choice of W is the
same as choosing the neighbourhood structure in a CAR model, where wij = 1 if and only if
spatial region i is a neighbour of spatial region j. In our process pump example this would mean
specifying which sensors are neighbours.

Computational considerations can also guide the choice of W, however. As we have seen,
CAPA-CC and CPT-CC scale exponentially in the band of Q. Hence, the band of W governs
the run-time of our algorithms to a large extent. A reasonable default choice of W is therefore
a low value of r in the r-banded adjacency matrix W(r), defined by

wij =

{
1 if 0 < |i− j| ≤ r,
0 otherwise.

(29)

In the simulations of the next section, we illustrate that good performance can be achieved even
when specifying W to have a much narrower band than the true Q.
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In cases where the precision matrix is sparse but not banded, bandwidth reduction algo-
rithms such as the Cuthill-McKee algorithm (Cuthill and McKee, 1969) and the Gibbs-Poole-
Stockmeyer algorithm (Lewis, 1982) can be a useful pre-processing step before running CAPA-
CC or CPT-CC.

6 Simulation study

We next turn to examine the power and estimation accuracy of CAPA-CC and CPT-CC in a
range of data settings. In almost all cases, we test the robustness of the methods to incorrectly
specifying the adjacency matrix in the precision matrix estimate. Like before, we concentrate
on anomaly detection first, and changepoint detection afterwards.

For both problems, we have chosen a widely used one-parameter version of the conditional
autoregressive (CAR) model called the row-standardised CAR model as our primary testbed
(see for instance Ver Hoef et al. (2018) for a concise introduction). This CAR model is given by

QCAR(ρ,W) := diag(W1)− ρW, (30)

where W is an adjacency matrix as before. QCAR is then standardised so that Q−1 becomes a
correlation matrix, and we let µ0 = 0 throughout. Conveniently, the sparsity structure of QCAR
follows directly from the design of W. In our simulations, we consider data with precision
matrices corresponding to the r-banded neighbourhood structures given in (29) and regular
lattice neighbourhood structures. To define the m ×m lattice adjacency matrix, let (u, v) for
0 ≤ u, v ≤ m denote the coordinate of a node in the lattice. The neighbourhood of (u, v) is
considered to be {(u− 1, v), (u+ 1, v), (u, v − 1), (u, v + 1)}. Coordinates are then enumerated
by i = (u − 1)m + v, such that the square lattice adjacency matrix Wlat can be defined by
wij = 1 if i and j are neighbours and 0 otherwise. For the sake of brevity, we also define
Qlat(ρ) := QCAR(ρ,Wlat) and Q(ρ, r) := QCAR(ρ,W(r)). In addition to the CAR models, we
will also test performance under the constant correlation model, given by

Qcon(ρ) := (ρ11
ᵀ

+ (1− ρ)I)−1. (31)

Note that we use W∗ to refer to the true adjacency matrix of the data.
If more than one series changes, the power of different methods may depend on the how

similarly each series change. To investigate this we consider the following ways of simulated
anomalous or post-change means, µk, k = 1, . . . ,K : µ

(Jk)
k ∼ N(0,ΣJk,Jk

), where Σ is the
data covariance matrix, and µ

(Jk)
k ∼ N(0, (Qcon(ρ))−1). We refer to changes being drawn from

the former and latter classes, respectively, by µ(Σ) and µ(ρ). Note that ρ = 0 and ρ = 1
correspond to the special cases of the means being independent and equal for the changing
variables, respectively.

After sampling a mean vector, it is scaled by a constant to achieve a specific signal strength
ϑk := ‖µk − µ0‖2 = ‖µk‖2 for anomalies, and ϑk,k−1 := ‖µk − µk−1‖2 for changes. Moreover,
unless stated otherwise, we let Jk = {1, 2, . . . , Jk}, where Jk ∈ [p] denotes the number of
changing variables.

In all the simulations, the penalty functions or detection thresholds are tuned to achieve
α = 0.05 ± 0.02 probability of a false positive in data simulated from the appropriate null
distribution. In the case of a penalty function, we find b > 0 such that bP (|J|) meets this
criteria. Throughout, we also set the minimum segment length l = 2 and the maximum segment
length M = 100.

6.1 Single anomaly detection

To the best of our knowledge, there are no other statistical methods tailored for jointly detecting
sparse and dense anomalies in correlated multivariate data. A comparison between methods for
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Figure 5: Power curves for correct and misspecified versions of CAPA-CC for a single known
anomaly at (s, e) = (100, 110) when J = 1 and p = 100. The existing MVCAPA method for
iid variables is marked in blue, and the red colours correspond to versions CAPA-CC. A lighter
red colour roughly means increasing misspecification of the precision matrix’s structure. Results
for 2-banded, lattice and globally constant correlation precision matrices are shown from top to
bottom, with increasing ρ from left to right. Other parameters: n = 200, α = 0.05, and 500
repetitions were used during tuning and for each point along the power curves.

independent multivariate data was performed by Fisch et al. (2019b), where their MVCAPA
method was shown to generally outperform other competitors. Hence, we focus on comparing
correctly and various incorrectly specified version of CAPA-CC with MVCAPA in this section,
to see the worth of incorporating cross-correlations, and discover the trade-offs between the two
methods.

We evaluate methods in terms of power to detect an anomaly of increasing signal strength,
and also assess the correctness of the estimated subset of anomalous variables, J.

6.1.1 Independence vs. dependence

As the performance of the anomaly detection methods we consider ultimately hinges on the
performance of a test statistics at each pair (s, e), we compare performance assuming that the
location of the collective anomaly is known a priori. That is, we fix the collective anomaly
at (s, e) = (n/2 + 1, n/2 + 10), and compare the power of S̃(s, e) with the corresponding
test statistic assuming cross-independence used within MVCAPA. In CAPA-CC, we test us-
ing the true precision matrix Q, an estimate based on the true adjacency structure Q̂(W∗),
as well as misspecified banded adjacency structures with r = 1, 2, 4. The power at each point
along the power curve is estimated from 1000 (p = 10) or 500 (p = 100) simulated datasets,
and the same datasets were used for all methods. The full set of tested scenarios include all
combinations of {(n, p),Q, ρ, J,µ(·)} for (n, p) = (100, 10), (200, 100), Q = Q(2),Qlat,Qcon,
ρ = 0.3, 0.5, 0.7, 0.9, 0.99, J = 1, b√pc, p, and change classes µ(Σ), µ(0), µ(0.8), µ(0.9) and µ(1).
In addition, we have also varied which series are anomalous for selected scenarios. Note that
CAPA-CC(Q) represents the performance of an oracle method. For larger n relative to p, how-
ever, the difference between CAPA-CC(Q) and CAPA-CC(Q̂(W∗)) will decrease.

A first main finding, illustrated in Figure 5, is that for detecting a single anomalous variable,
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Figure 6: Power curves for a single known anomaly at (s, e) = (100, 110) when J = 10, p = 100
and ρ = 0.9 with the same set of methods as in Figure 5. From left to right, the columns of plots
show results for the anomalous means being sampled from N(0, I), N(0,Σ), N(0,Q−1

con(0.8))
and the right-most column is equivalent to µ(i) = µ for all i ∈ J. From top to bottom are results
for 2-banded, lattice and global constant correlation data precision matrices. Other parameters:
n = 200, α = 0.05, and 500 repetitions were used during tuning and for each point along the
power curves.

incorporating correlations lead to higher power, also when misspecifying the structure of the
precision matrix estimate. The stronger the correlation, the higher the gain in power. For a
collection of densely correlated variables, even using a 1-banded estimate of the precision matrix
leads to a big improvement in power for sparse anomalies (the bottom row of plots).

The picture for more than one anomalous variable is more complex. Figure 6 displays the
results for different precision matrices and classes of changes for J = 10, p = 100 and ρ = 0.9.
Observe that for all precision matrices, CAPA-CC is superior for anomalous means sampled
from the independent normal distribution (µ(0)) and when they are sampled from a normal dis-
tribution with the data correlation matrix (µ(Σ)). The power of CAPA-CC decreases, however,
when the anomalous means have very similar or equal values, as in the case of means being
sampled from to µ(0.8) and µ(1). Surprisingly, for the special case of equally sized anomalous
means and a banded or lattice precision matrix, MVCAPA is more powerful than using the true
model for the precision in CAPA-CC(Q). For J = 100, this is also the case for equal changes
in the global constant correlation model (Figure 16 in the Supplementary Material). As we will
see in Section 6.2, the same phenomenon can be observed for other methods as well, and we
discuss it further in Section 8. For low values of ρ, we observe almost no difference between the
two methods, which is why we focus on ρ ≥ 0.5. For higher values of ρ than 0.9, the gain from
incorporating correlations in the method increases. For p = 10, the corresponding results look
qualitatively similar. See Section B.2 of the Supplementary Material for more details.
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Figure 7: Estimated sizes of J for J = {1} (left) and J = {1, 2, 3} (right) when p = 10 and the
location of the anomaly is assumed known. Other parameters: n = 100, Q = Q(2, 0.9), s = 10,
e = 20, ϑ = 2, µ(Σ) , α = 0.005.

6.1.2 Variable selection

Although CAPA-CC is not designed to estimate J consistently, it is worth investigating the
behaviour of Ĵ so that it is interpreted with sufficient caution. Note that we now use Ĵ to refer
to the output estimate of J for all algorithms. Also recall that we let J := |J| and Ĵ := |Ĵ|.

For p = 10 and 100, the precision and recall of Ĵ from MVCAPA as well as both true and
misspecified versions of CAPA-CC were compared in the single known anomaly setting, described
in Section 6.1.1. We also included the exact ML method for p = 10. Under a 2-banded precision
matrix model, we see from Tables 3 and 4 in the Supplementary Material that both CAPA-
CC and the exact ML method tend to have higher recall, but slightly lower precision, than
MVCAPA. The reason for this is illustrated in Figure 7, where it can be observed that all the
methods that incorporate cross-correlations overestimate J more frequently than MVCAPA. In
particular, CAPA-CC more often estimates anomalies as dense. This effect is seen more clearly
for p = 100 (Figure 20 in the Supplementary Material), where estimating J becomes increasingly
hard as J grows closer to the boundary k∗ between sparse and dense changes. Moreover, we
found that the estimated subset is quite sensitive to the scaling of the penalties relative to the
signal strength ϑ. If a more accurate estimate of J is desired, we thus recommend running a
post-processing step by optimising the penalised saving for each anomalous segment using only
the sparse penalty regime.

6.2 Single changepoint detection and estimation

We now look at changepoint detection and estimation in a single changepoint scenario, where
we also compare our method to the inspect method of Wang and Samworth (2018). We focus on
using CPT-CC with a Q̂(4) precision matrix. I.e., we assume that the precision matrix model
is misspecified in the rest of the section since this is most realistic, but note that improved
performance on the order of what can be seen in Figures 5 and 6 could be achieved by selecting
a more correct model. The version of inspect that assumes independence is available in the
R package InspectChangepoint, and we refer to it by inspect(I). Wang and Samworth (2018)
also discuss how inspect can be extended to include cross-correlations, and we have implemented
this version into inspect(Q̂). The inspect method does not require Q to be sparse, and thus
we estimate it using the same robust estimator (28) that we plug into the GLASSO method for
estimating Q in CPT-CC.

For comparing the method’s power, we assume that the changepoint τ is known a priori,
like in the anomaly setting. We let τ = n − 30 within the same scope of data scenarios as
in the anomaly setting of Section 6.1.1. A brief summary of the results are given by Figures
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Figure 8: Power curves for a single known changepoint at τ = 170 when J = 1 and p = 100.
Results for 2-banded, lattice and globally constant correlation precision matrices are shown from
top to bottom, with increasing ρ from left to right. Other parameters: n = 200, α = 0.05, and
1000 simulated data sets were used during tuning and power estimation.

8 and 9, which correspond to the ones shown in the anomaly setting. The main conclusion
is that CAPA-CC(Q̂(4)) generally is the most powerful method for the models we consider.
An exception from this rule can be observed for changes where more than J/p ' 0.1 adjacent
variables change in a very similar (µ(ρ) with ρ ≥ 0.9) or equal way, where MVCAPA is better.
Interestingly, observe that the same pattern of whether it is best to include correlations or not
also holds when comparing the two versions of inspect. For more details, see Section B.3 in the
Supplementary Material.

We also compare the RMSE of estimated changepoints for the four methods. For these
comparisons, to avoid conflation due to method having different powers, we assume the existence
of a single changepoint to be known a priori (as recommended by Fearnhead and Rigaill (2020)),
and let all methods output their estimate of the changepoint location. For the CPT-CC methods,
this is not unproblematic because testing for the existence of a changepoint is built into the
method through the penalty function. As a consequence, estimates of unsignificant changepoints
(when S̃ < 0) tend to be placed at either end of the data set. For a fairer comparison, we have
therefore chosen to set ϑ = 3, such that almost all changes are significant. A subset of the results
for µ(J) ∼ N(0,ΣJ,J) are given in Table 1. We see that CAPA-CC(Q̂(4)) also performs well in
terms of RMSE, but that inspect is more competitive, especially for the medium sparse changes
of J = 10. For the other change classes, the same trends as seen in the power simulations can
be observed (see Section B.3 in the Supplementary Material), but with a stronger performance
of inspect for J = 10; CAPA-CC(Q̂(4)) is almost uniformly better for µ(0), while for µ(1),
MVCAPA is better when J = 100, and either inspect(I) or inspect(Q) is best for J = 10.
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Figure 9: Power curves for a single known changepoint at τ = 170 when J = 10 and p = 100.
Results for 2-banded, lattice and globally constant correlation precision matrices are shown from
top to bottom, with increasingly similar entries in the changed mean from left to right. Other
parameters: n = 200, ρ = 0.9, α = 0.05, and 1000 simulated data sets were used during tuning
and power estimation.

6.3 Multiple anomaly detection

The simulation study is concluded by comparing the adjusted rand index (ARI) of CAPA-
CC(Q̂(4)), MVCAPA, inspect(Q̂) and inspect(I) in a multiple anomaly setting with and without
point anomalies (Hubert and Arabie, 1985). In this setting, the methods are used to classify
observations either as anomalous (point or collective) or normal. The ARI measures the accu-
racy of the classification, but adjusts for the sizes of the classes. It is therefore suitable in an
unbalanced classification problem such as ours.

Since inspect is not specifically made for the anomaly setting, as opposed to MVCAPA and
CAPA-CC, we do not expect it to be competitive. However, since it could be used for the
purpose, we include it to measure the gain of using a dedicated anomaly detection method
rather than a generic changepoint detection method. Our heuristic for turning inspect into an
anomaly classifier is as follows: If the sample mean of an estimated segment has L2 norm greater
than 1, the observations within the segment are classified as anomalous, and if the L2 norm is
smaller than or equal to 1, they are classified as normal.

Table 2 displays the results for p = 100, n = 1000 with three collective anomalies at
{(sk, ek)}3k=1 = {(300, 330), (600, 620, ), (900, 910)}, J1 = {1}, J2 = {1, . . . , 10} and J3 =
{1, . . . , 10, 46, . . . , 55, 91, . . . , 100}, with change sizes (ϑ1, ϑ2, ϑ3) = (2, 4, 6). The results are
again very favourable for CAPA-CC(Q̂(4)). In the scenarios with point anomalies in particu-
lar, a lot is gained by using CAPA-CC or MVCAPA in favour of inspect. For µ(Σ), the ARI’s
compare similarly as for µ(0), and for (ϑ1, ϑ2, ϑ3) = (1.5, 3, 4.5) and (ϑ1, ϑ2, ϑ3) = (1, 2, 3) the
results are even more in CAPA-CC(Q̂(4))’s favour. The corresponding results for p = 10 are
qualitatively similar in all respects. See Section B.4 in the Supplementary Material for details.
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Q ρ J CPT-CC(Q̂(4)) CPT-CC(I) inspect(Q̂) inspect(I)

Q(2) 0.5 1 0.51 0.55 1.38 0.55
Q(2) 0.9 1 0.21 0.50 0.81 0.59
Qlat 0.5 1 0.54 0.58 1.26 0.51
Qlat 0.9 1 0.37 0.59 0.89 0.52
Qcon 0.5 1 0.29 6.32 0.77 0.78
Qcon 0.9 1 0.00 10.22 0.13 2.82
Q(2) 0.5 10 0.75 0.72 1.68 0.60
Q(2) 0.9 10 0.84 1.41 1.72 1.40
Qlat 0.5 10 0.64 0.66 1.68 0.55
Qlat 0.9 10 0.78 1.07 1.41 0.83
Qcon 0.5 10 0.74 13.44 0.92 2.21
Qcon 0.9 10 0.20 27.31 0.18 8.43
Q(2) 0.5 100 0.73 0.77 3.07 1.11
Q(2) 0.9 100 0.73 1.71 3.80 2.12
Qlat 0.5 100 0.77 0.79 3.02 1.11
Qlat 0.9 100 1.05 2.98 3.71 1.92
Qcon 0.5 100 2.63 65.10 5.89 16.20
Qcon 0.9 100 8.38 113.87 18.99 38.35

Table 1: RMSE of changepoint estimates for p = 100, n = 200, τ = 140, ϑ = 3, and µ(Σ)

changes. The smallest value is given in bold. 1000 random datasets were used for each RMSE
estimate.

7 Pump data analysis

We now return to the problem of inferring anomalous segments and variables in the pump
data described in the introduction. Recall that the data was preprocessed by regressing a set
of monitoring variables onto a set of state variables, such that we are left with five series of
residuals to detect anomalies in (Figure 1). Some of the residuals are strongly correlated (Figure
10), suggesting that incorporating cross-correlations when modelling them is advantageous based
on our simulation study.

Figure 10: The robustly estimated correlation matrix (see (28)) of the pump data after prepro-
cessing.

Before running CAPA-CC on the pump data, the penalties must be tuned and input param-
eters selected. The tuning of the penalties accounts for all features in the data that we have
not modelled, e.g. auto-correlation, a non-stationary correlation matrix and trends in the data’s
mean not associated with segments of suboptimal operation. As we do not have training data
guaranteed to only contain baseline observations, we instead tune the penalties such that the
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Q ρ µ(·) Pt. anoms CAPA-CC(Q̂(4)) CAPA-CC(I) inspect(Q̂) inspect(I)

Q(2) 0.5 0 – 0.82 0.80 0.52 0.41
Q(2) 0.5 0 0.84 0.83 0.21 0.08
Q(2) 0.9 0 – 0.90 0.72 0.69 0.00
Q(2) 0.9 0 0.91 0.78 0.23 −0.01
Q(2) 0.5 0.8 – 0.71 0.78 0.49 0.32
Q(2) 0.5 0.8 0.75 0.82 0.18 0.09
Q(2) 0.9 0.8 – 0.75 0.70 0.64 0.00
Q(2) 0.9 0.8 0.79 0.73 0.21 −0.02
Qlat 0.5 0 – 0.82 0.79 0.56 0.42
Qlat 0.5 0 0.77 0.75 0.25 0.22
Qlat 0.9 0 – 0.85 0.73 0.60 0.03
Qlat 0.9 0 0.83 0.71 0.30 0.06
Qlat 0.5 0.8 – 0.70 0.75 0.47 0.36
Qlat 0.5 0.8 0.69 0.74 0.34 0.26
Qlat 0.9 0.8 – 0.74 0.71 0.56 0.04
Qlat 0.9 0.8 0.70 0.70 0.36 0.06
Qcon 0.5 0 – 0.88 0.01 0.31 0.00
Qcon 0.5 0 0.90 0.16 0.11 0.00
Qcon 0.9 0 – 1.00 0.00 0.39 0.00
Qcon 0.9 0 1.00 0.10 0.14 0.00
Qcon 0.5 0.8 – 0.72 0.00 0.32 0.00
Qcon 0.5 0.8 0.76 0.12 0.14 0.00
Qcon 0.9 0.8 – 0.85 0.01 0.43 0.00
Qcon 0.9 0.8 0.88 0.09 0.15 0.00

Table 2: ARI of classifying normal and anomalous observations when p = 100, n = 1000,
(ϑk)

3
k=1 = (2, 4, 6), {(sk, ek)}3k=1 = {(300, 330), (600, 620, ), (900, 910)} and J1 = {1}, J2 =

{1, . . . , 10}, J3 = {1, . . . , 10, 46, . . . , 55, 91, . . . , 100}, based on 100 repetitions. Point anomalies
are placed at 10 fixed locations, each randomly affecting a single variable with size sampled from
N(0, 4 log p). The largest value for each data setting is given in bold.

correct number of anomalies are output to see how they align with the known ones. We do this
by adjusting the scaling factor of the collective anomaly penalty function, b, while keeping the
point anomaly scaling at 1. This tuning procedure resulted in a scaling factor of b = 11. For
the remaining inputs, we set Q to the inverse of the correlation matrix in Figure 10, a minimum
segment length l = 5, and use no maximum segment length.

The final result is shown in Figure 11. Before interpreting the output, it is important to
know that the start points of the known anomalies are more uncertain than the end points; the
end point is the time where the pump was brought back to normal operation, whereas the start
point has been set based on a retrospective analysis by the engineers. With this in mind, we
observe that three out of four estimated collective anomalies are within three separate known
anomalous segments, with the estimated end points being more accurate than the estimated
start points. The short known anomaly from t = 125 to t = 135 is missed as there is virtually
no signal of it in the data. The estimated anomaly from t = 1306 to t = 1362, however, does
not overlap with a known anomaly, but it clearly looks anomalous by eye. This segment is also
of interest to detect since it may correspond to an unknown segment of suboptimal operation.
If not, this segment points to a part of the data that fits our linear regression model poorly,
indicating that a more sophisticated model might be in order if fewer false alarms are required.
In general we expect that a better model for linking the state variables with the monitoring
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Figure 11: The four most significant estimated collective anomalies in the five residual times
series derived from the pump data. Tuning parameters: b = 11, bpoint = 1, l = 5 and M =∞.

variables would improve the results even further because more of the trend in the mean not
associated with the known anomalies would be absorbed by the model rather than leaking into
the residuals.

In addition, notice the importance of including point anomalies in the analysis for this
application. Rerunning CAPA-CC on the data without inferring point anomalies resulted in
four additional false collective anomalies being inferred for b = 11.

8 Conclusions

In this article, we have proposed computationally efficient penalised cost-based methods for
detecting multiple sparse and dense anomalies or changes in the mean of cross-correlated data. In
addition to estimating the locations of the changepoints, the methods indicate which components
are affected by a change. This is important to understand why and how changes or anomalies
have occured. At the computational core of these methods lies a novel dynamic programming
algorithm for solving banded unconstrained binary quadratic programs which approximate the
Gaussian likelihood ratio test for a subset mean change.

The motivation of our methodological development comes from condition monitoring of an
industrial process pump, where strong cross-correlations between spatially adjacent sensor mea-
surements could be observed. Although several modelling assumptions were violated, three out
of four known anomalies could be detected, with only one potential false alarm, when analysing
the data with CAPA-CC. Even better results can be expected by using a more accurate model
to remove trends not associated with anomalies. Also of interest for this application is being
able to detect collective anomalies in real-time. The CAPA framework we have adopted has
been shown to be able to be applied in online settings (Fisch et al., 2020), and similar ideas
could be used to produce a sequential version of CAPA-CC.

When assessing the method’s performance empirically, special attention was paid to how
incorporating cross-correlations in the model affected the results compared to ignoring it as
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most existing methods do. We found that for low to medium levels of dependence there was
almost no difference in power or estimation accuracy; e.g. for ρ < 0.5 in the 2-banded and
lattice precision matrices, and ρ < 0.2 for the constant correlation matrix, in the case of p = 100
variables. For increasingly stronger dependence above these levels, either in the form of a denser
precision matrix or higher correlation parameter, the benefit of including cross-correlation in the
model of the data grows in almost all tested cases.

The exception to this rule is connected to the somewhat surprising finding that the shape
of the change in mean across variables influences the magnitude of the advantage of including
cross-correlations quite strongly. In positively correlated data, changes that affect many series
and are of very similar, or the same, size for each series can be harder to detect when including
cross-correlations in the model. For example, in a model with strong positive correlations, it is
much harder to detect if a moderately large amount of variables changes by the same amount
in the same direction, than if these variables changes by varying amounts in wildly varying
directions. The intuition behind this is that in the former case, the change mimics the expected
behaviour of the data given the variables’ strong positive dependence, while in the latter, the
change strongly violates the model’s expectation. The model assuming independence, on the
other hand, is completely agnostic to the shape of the changed mean vector. As a result, the
benefits of including correlations in the model is small, or perhaps even negative, if variables in
the data is strongly dependent, and interest lies on detecting moderately sparse to dense and
similarly changing variables.
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Supplementary Material

Supplementary material Proofs of the propositions, additional comments to Proposition 2,
and detailed results from the simulation study.

Code Efficient implementations of the CAPA-CC and CPT-CC algorithms as well as the code
for reproducing the simulation study is available in the R package capacc, downloadable
at https://github.com/Tveten/capacc. CAPA-CC will be included in a future version
of the R package anomaly on CRAN, which contains the CAPA family of methods.
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Supplementary Material

A Proofs and additional comments

A.1 Proof of Proposition 1

First rewrite the optimisation problem in terms of the binary vector u:

S̃(s, e) = max
u

(e− s)
[
2x̄

ᵀ
Q(x̄ ◦ u)− (x̄ ◦ u)

ᵀ
Q(x̄ ◦ u)

]
− β1

ᵀ
u.

The proof is completed by using properties of the Hadamard product and its relations to the
regular matrix product to reexpress the optimal savings as

S̃(s, e) = max
u

(e− s)
[
2x̄

ᵀ
Qdiag(x̄)u− u

ᵀ
(x̄x̄

ᵀ ◦Q)u
]
− β1

ᵀ
u

= max
u

[
2(e− s)x̄ᵀ

Qdiag(x̄)− β
]
u + u

ᵀ [−(e− s)x̄x̄
ᵀ ◦Q

]
u.

= max
u

u
ᵀ

[2(e− s)x̄ ◦Qx̄− β] + u
ᵀ [−(e− s)x̄x̄

ᵀ ◦Q
]
u.

A.2 Proof of Proposition 2 with comments

Let J̃ := argmaxJ

[
S̃(s, e,J) − P (|J|)

]
and Ĵ := argmaxJ

[
S(s, e,J) − P (|J|)

]
. In the following,

we omit s and e in the notation of S(s, e,J) and S̃(s, e,J), such that S(Ĵ) = S(s, e) and
S̃(J̃) = S̃(s, e) in Proposition 2.

The lower bound S(Ĵ) − S̃(J̃) ≥ 0 follows from S using the exact MLE and S̃ using an
alternative estimator. I.e., S(J) ≥ S̃(J) for all subsets J. Hence, S(Ĵ) ≥ S(J̃) ≥ S̃(J̃).

To obtain the upper bound, let ∆S(J) := S(J)− S̃(J). Now, as J̃ is the maximiser of S̃, we
get that

S(Ĵ)− S̃(J̃) = S̃(Ĵ) + ∆S(Ĵ)− S̃(J̃) ≤ ∆S(Ĵ).

The final result immediately follows;

∆S(Ĵ) = (e− s)(2x̄(Ĵc)−W(Ĵ)x̄(Ĵc))
ᵀ
QW(Ĵ)x̄(Ĵc)

≤ 2(e− s)x̄(Ĵc)
ᵀ
QW(Ĵ)x̄(Ĵc)

≤ 2(e− s)λmax

(
QW(Ĵ)

)
‖x̄(Ĵc)‖2.

The first inequality is due to the positive semi-definiteness of the quadratic form in the second
term, while the second inequality is a standard result on quadratic forms. This concludes the
proof.

The following arguments suggests that the worst-case scenario for the approximation is sparse
changes in strongly correlated data, as is also observed in the simulations of Section B.1. First
observe that ‖x̄(s+1):e(Ĵ

c)‖2 grows as |Ĵ| becomes smaller. Moreover, under the cross-correlated
multivariate normal model with means equal to 0 and variances equal to 1,

(e− s)
∥∥x̄(s+1):e

(
Ĵc
)∥∥2

=
∑

j∈Ĵc

(e− s)
(
x̄

(j)
(s+1):e

)2
, (32)

where (e − s)
(
x̄

(j)
(s+1):e

)2 for j ∈ Ĵc are dependent χ2
1 random variables. By standard rules of

expectation and variance, we get that the expected value of (32) is |Ĵc| and the variance is(
|Ĵc| +∑i 6=j∈Ĵc ωi,j

)
, where ωi,j is the pairwise covariance between

(
x̄

(i)
(s+1):e

)2 and
(
x̄

(j)
(s+1):e

)2.
If we assume the zero-mean model to hold for the variables in the estimated non-anomalous
variables Ĵc, we thus see that approximation may get worse as the change becomes sparser and
the strength of the correlation increases in positive direction.
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Note that this analysis only contains half of the picture as λmax

(
QW(Ĵ)

)
seems intractable

to study theoretically even for simple examples of Q. Our numerical experimentation, however,
suggests that λmax

(
QW(Ĵ)

)
also grows as the correlations increase. In addition, the simulation

results in Section B.1 in the Supplementary Material agree with the conclusion that the greatest
difference in performance occurs when there is a sparse change in strongly correlated data,
although the difference is small in the tested low p settings.

A.3 Proof of Proposition 3

This proof follows the lines of the proof of Theorem 3.1 in Killick et al. (2012). First, recall the
expression for the approximate savings,

S̃(s, e,J) = (e− s)
[
2x̄

ᵀ
Qx̄(J)− x̄(J)

ᵀ
Qx̄(J)

]
,

and that we write S̃(s, e) = maxJ[S̃(s, e,J) − P (J)] for the optimal penalised approximate
savings. Next, observe that

max
J

[
S̃(t,m,J)− P (J)

]
+ max

J
S̃(m,m′,J) ≥ max

J

[
S̃(t,m′,J)− P (J)

]

max
J

[
S̃(t,m,J)− P (J)

]
+ max

J

[
S̃(m,m′,J)− P (J)

]
+ max

J
P (J) ≥ max

J

[
S̃(t,m′,J)− P (J)

]

S̃(t,m) + S̃(m,m′) + max
J

P (J) ≥ S̃(t,m′) (33)

The inequality follows because of the basic fact that we are maximising over more parameters
on the left-hand side than on the right-hand side, while adding the maximum penalty in the
left-hand side guarantees that the additional penalty term is canceled out. As a consequence of
(33), and assuming that

C(t) + S̃(t,m) + max
J

P (J) ≤ C(m)

holds, we see that for all future times m′ ≥ m+ l,

C(t) + S̃(t,m) + S̃(m,m′) + max
J

P (J) ≤ C(m) + S̃(m,m′)

C(t) + S̃(t,m′) ≤ C(m′).

The proof is concluded by noting that for the penalty given in (5), maxJ P (J) = αdense.

A.4 Proof of Proposition 4

The proof follows the same steps as in the proof of Proposition 1 in Section A.1.

B Additional simulation results

B.1 Approximation vs. MLE

In this section, we compare the power of our approximation in CAPA-CC with the exact ML
method in a data scenario with n = 100 observations from a N(µt,Q(ρ, 2)−1) distribution with
a single collective anomaly at (s, e) = (50, 60) when p = 10. As in Section 6.1.1 in the main
text, we assume that the location of the anomaly is known. Within this setup, we focus on
varying the change class, ρ, p and J = |J|. The penalty function for a given precision matrix
was tuned for CAPA-CC and reused in the ML method for computational reasons. Proposition
2 guarantees that CAPA-CC is in a disadvantage, if anything, under this choice.

As can be seen from Figure 12, almost no power is lost in the low dimensional setting by
using our approximation rather than the exact ML method, both when using the true precision
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Figure 12: Power curves of our approximation and the exact ML method with the true precision
matrix (dark red and gold lines) and an estimate using the true adjacency matrix (red and
orange lines). Plot-wise from left to right, the correlation grows, and the number of anomalous
variables grows from top to bottom. Other parameters: n = 100, p = 10, Q = Q(2), s = 50,
e = 60, change class µ(Σ), and 1000 repetitions were used during tuning and power estimation.

matrix and when the precision matrix is estimated from the true adjacency matrix. It is only in
the scenarios with a very high correlation of 0.99 and a relatively sparse change of J = 1, 3 that
there is a notable difference between the two methods for each precision matrix Q and Q̂(W∗).
We should point out that this difference may become bigger as p grows. For p = 5, 10 and15,
however, the results are very similar (Figure 13). All the results for µ(0) (i.i.d.) and µ(1) (equal)
changes were qualitatively similar to the results for µ(Σ) shown here.

Figure 13: Power comparison of the approximation and the MLE with the true precision matrix
for p = 5, 10, 15 in the worst-case scenario of a single changing variable in highly correlated data
(the top right scenario in Figure 12). Other parameters: n = 100, s = 50, e = 60, and 1000
repetitions were used during tuning and power estimation.
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Figure 14: Power curves for J = 10, p = 100, ρ = 0.7, n = 200, (s, e) = (100, 110), α = 0.05.

B.2 Single anomaly detection

Figures 14-19 display additional simulation results for comparing power when incorporating
dependence in the method versus ignoring it in the single anomaly setting of Section 6.1.1 in
the main text. For more results on variable selection in the single anomaly setting, see Figure
20 and Tables 3 and 4.

B.3 Single changepoint detection and estimation

Further simulation results on power in the single changepoint setting is given in Figure 21-25.
Tables 5-10 give additional results on the RMSE of changepoint estimates.

B.4 Multiple anomaly detection

A supplementary result on multiple anomaly detection is given in Table 11. The setup is precisely
the same as in Table 2 in the main text, with the exception that the changes are of half the size.
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Table 3: Average precision, recall and Ĵ over 1000 repetitions for p = 10 and n = 100. Other
parameters: Q = Q(2), s = n/10 and e = s+ 10, µ(Σ), α = 0.005.

J ϑ ρ Method Ĵ Precision Recall

1 2 0.5 MVCAPA 1.66 0.73 1.00
1 2 0.5 CAPA-CC(Q) 1.97 0.66 1.00
1 2 0.5 ML(Q) 1.94 0.65 1.00
1 2 0.5 CAPA-CC(Q̂(4)) 1.77 0.70 1.00
1 2 0.5 ML(Q̂(4)) 1.77 0.70 1.00
1 2 0.9 MVCAPA 1.79 0.78 1.00
1 2 0.9 CAPA-CC(Q) 1.87 0.73 1.00
1 2 0.9 ML(Q) 1.77 0.71 1.00
1 2 0.9 CAPA-CC(Q̂(4)) 1.89 0.72 1.00
1 2 0.9 ML(Q̂(4)) 1.79 0.70 1.00
1 5 0.5 MVCAPA 1.66 0.74 1.00
1 5 0.5 CAPA-CC(Q) 1.92 0.68 1.00
1 5 0.5 ML(Q) 1.90 0.68 1.00
1 5 0.5 CAPA-CC(Q̂(4)) 1.77 0.71 1.00
1 5 0.5 ML(Q̂(4)) 1.73 0.71 1.00
1 5 0.9 MVCAPA 1.66 0.81 1.00
1 5 0.9 CAPA-CC(Q) 1.84 0.72 1.00
1 5 0.9 ML(Q) 1.75 0.71 1.00
1 5 0.9 CAPA-CC(Q̂(4)) 1.85 0.73 1.00
1 5 0.9 ML(Q̂(4)) 1.81 0.69 1.00
3 2 0.5 MVCAPA 2.80 0.83 0.70
3 2 0.5 CAPA-CC(Q) 3.25 0.78 0.74
3 2 0.5 ML(Q) 3.15 0.78 0.73
3 2 0.5 CAPA-CC(Q̂(4)) 2.97 0.81 0.72
3 2 0.5 ML(Q̂(4)) 2.88 0.81 0.70
3 2 0.9 MVCAPA 2.86 0.87 0.72
3 2 0.9 CAPA-CC(Q) 3.47 0.82 0.81
3 2 0.9 ML(Q) 3.05 0.83 0.77
3 2 0.9 CAPA-CC(Q̂(4)) 3.55 0.80 0.81
3 2 0.9 ML(Q̂(4)) 3.10 0.81 0.77
3 5 0.5 MVCAPA 3.42 0.85 0.88
3 5 0.5 CAPA-CC(Q) 3.85 0.80 0.90
3 5 0.5 ML(Q) 3.80 0.80 0.90
3 5 0.5 CAPA-CC(Q̂(4)) 3.56 0.83 0.89
3 5 0.5 ML(Q̂(4)) 3.47 0.84 0.89
3 5 0.9 MVCAPA 3.53 0.88 0.90
3 5 0.9 CAPA-CC(Q) 4.12 0.81 0.93
3 5 0.9 ML(Q) 3.63 0.83 0.92
3 5 0.9 CAPA-CC(Q̂(4)) 4.16 0.80 0.93
3 5 0.9 ML(Q̂(4)) 3.65 0.82 0.92
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Table 4: Average precision, recall and Ĵ over 1000 repetitions for p = 100 and n = 200. Other
parameters: Q = Q(2), s = n/10 and e = s+ 10, µ(Σ), α = 0.005.

J ϑ ρ Method Ĵ Precision Recall

1 2 0.5 MVCAPA 10.25 0.63 1.00
1 2 0.5 CAPA-CC(Q) 10.40 0.64 1.00
1 2 0.5 CAPA-CC(Q̂(4)) 11.62 0.62 1.00
1 2 0.9 MVCAPA 4.45 0.80 1.00
1 2 0.9 CAPA-CC(Q) 10.74 0.69 1.00
1 2 0.9 CAPA-CC(Q̂(4)) 13.73 0.66 1.00
1 5 0.5 MVCAPA 9.65 0.63 1.00
1 5 0.5 CAPA-CC(Q) 10.15 0.62 1.00
1 5 0.5 CAPA-CC(Q̂(4)) 9.79 0.62 1.00
1 5 0.9 MVCAPA 5.21 0.81 1.00
1 5 0.9 CAPA-CC(Q) 11.44 0.68 1.00
1 5 0.9 CAPA-CC(Q̂(4)) 11.84 0.67 1.00
5 2 0.5 MVCAPA 27.83 0.59 0.55
5 2 0.5 CAPA-CC(Q) 29.32 0.59 0.57
5 2 0.5 CAPA-CC(Q̂(4)) 30.00 0.56 0.56
5 2 0.9 MVCAPA 11.35 0.79 0.42
5 2 0.9 CAPA-CC(Q) 34.55 0.56 0.63
5 2 0.9 CAPA-CC(Q̂(4)) 38.06 0.50 0.63
5 5 0.5 MVCAPA 44.22 0.53 0.84
5 5 0.5 CAPA-CC(Q) 47.75 0.51 0.85
5 5 0.5 CAPA-CC(Q̂(4)) 51.34 0.47 0.86
5 5 0.9 MVCAPA 21.58 0.78 0.79
5 5 0.9 CAPA-CC(Q) 55.21 0.46 0.91
5 5 0.9 CAPA-CC(Q̂(4)) 58.26 0.42 0.91
10 2 0.5 MVCAPA 38.26 0.55 0.50
10 2 0.5 CAPA-CC(Q) 42.77 0.51 0.54
10 2 0.5 CAPA-CC(Q̂(4)) 44.63 0.48 0.54
10 2 0.9 MVCAPA 14.15 0.76 0.28
10 2 0.9 CAPA-CC(Q) 49.74 0.43 0.60
10 2 0.9 CAPA-CC(Q̂(4)) 52.24 0.40 0.60
10 5 0.5 MVCAPA 85.29 0.23 0.93
10 5 0.5 CAPA-CC(Q) 88.40 0.20 0.94
10 5 0.5 CAPA-CC(Q̂(4)) 89.42 0.19 0.95
10 5 0.9 MVCAPA 51.88 0.55 0.78
10 5 0.9 CAPA-CC(Q) 94.77 0.15 0.98
10 5 0.9 CAPA-CC(Q̂(4)) 95.97 0.14 0.98
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Figure 15: Power curves for J = 10, p = 100, ρ = 0.5, n = 200, (s, e) = (100, 110), α = 0.05.

Figure 16: Power curves for J = 100, p = 100, ρ = 0.9, n = 200, (s, e) = (100, 110), α = 0.05.
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Figure 17: Power curves for J = 100, p = 100, ρ = 0.7, n = 200, (s, e) = (100, 110), α = 0.05.

Figure 18: Power curves for J = 100, p = 100, ρ = 0.5, n = 200, (s, e) = (100, 110), α = 0.05.

Figure 19: Power curves for J = {1, 2, 3, 4, 50, 51, 52, 98, 99, 100}, p = 100, n = 200, Q = Q(2)

(s, e) = (100, 110), µ(J)
1 ∼ µ(1), α = 0.05.
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Figure 20: Estimated sizes of J for J = {1} (left) J = {1, . . . , 5} (middle) and J = {1, . . . , 10}
when p = 100. Other parameters: n = 200, Q = Q(2, 0.9), s = 10, e = 20, ϑ = 3, µ(Σ) ,
α = 0.005.

Figure 21: Power curves for a single known changepoint at τ = 170 when J = 10, p = 100 and
ρ = 0.5. Other parameters: n = 200, ρ = 0.5, α = 0.05.
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Figure 22: Power curves for a single known changepoint at τ = 170 when J = 10, p = 100 and
ρ = 0.7. Other parameters: n = 200, ρ = 0.7, α = 0.05.

Figure 23: Power curves for a single known changepoint at τ = 170 when J = 100, p = 100 and
ρ = 0.5. Other parameters: n = 200, ρ = 0.5, α = 0.05.
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Figure 24: Power curves for a single known changepoint at τ = 170 when J = 100, p = 100 and
ρ = 0.7. Other parameters: n = 200, ρ = 0.7, α = 0.05.

Figure 25: Power curves for a single known changepoint at τ = 170 when J = 100, p = 100 and
ρ = 0.9. Other parameters: n = 200, α = 0.05.
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Table 5: RMSE for p = 100, n = 200, τ = 140, ϑ = 2 and µ(0) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) inspect(Q̂) CPT-CC(I) inspect(I)

Q(2) 0.5 1 1.3 3.4 1.4 1.4
Q(2) 0.5 10 1.9 4.4 1.9 1.7
Q(2) 0.5 100 2.3 9.5 2.6 5.4
Q(2) 0.7 1 1.2 3.1 1.4 1.3
Q(2) 0.7 10 1.7 3.7 2.2 1.8
Q(2) 0.7 100 1.8 7.4 3.0 5.7
Q(2) 0.9 1 0.7 2.1 1.5 1.3
Q(2) 0.9 10 1.0 2.3 3.6 1.7
Q(2) 0.9 100 1.1 5.5 4.9 6.8
Qlat 0.5 1 1.3 3.3 1.4 1.4
Qlat 0.5 10 2.1 4.4 2.3 1.6
Qlat 0.5 100 2.7 8.6 2.7 4.6
Qlat 0.7 1 1.4 2.8 1.4 1.3
Qlat 0.7 10 1.7 4.0 2.0 1.9
Qlat 0.7 100 2.1 8.8 2.5 5.7
Qlat 0.9 1 1.0 2.2 1.4 1.5
Qlat 0.9 10 1.4 3.3 2.4 1.8
Qlat 0.9 100 1.8 6.4 4.5 6.9
Qcon 0.5 1 0.8 1.8 13.3 2.4
Qcon 0.5 10 1.1 2.0 21.2 5.1
Qcon 0.5 100 1.1 7.7 115.9 23.4
Qcon 0.7 1 0.5 1.1 17.1 6.4
Qcon 0.7 10 0.6 1.7 32.0 9.8
Qcon 0.7 100 0.5 5.5 126.1 34.9
Qcon 0.9 1 0.1 0.4 20.5 11.7
Qcon 0.9 10 0.1 3.7 53.9 17.7
Qcon 0.9 100 0.1 4.0 131.2 34.5
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Table 6: RMSE for p = 100, n = 200, τ = 140, ϑ = 2 and µ(Σ) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) inspect(Q̂) CPT-CC(I) inspect(I)

Q(2) 0.5 1 1.3 3.4 1.4 1.4
Q(2) 0.5 10 2.3 4.8 2.4 1.9
Q(2) 0.5 100 2.4 9.7 2.7 5.0
Q(2) 0.7 1 1.2 3.1 1.4 1.3
Q(2) 0.7 10 2.7 5.6 2.6 2.6
Q(2) 0.7 100 2.4 10.9 3.4 6.0
Q(2) 0.9 1 0.7 2.1 1.5 1.3
Q(2) 0.9 10 4.5 5.3 5.2 3.1
Q(2) 0.9 100 3.2 13.4 9.5 10.5
Qlat 0.5 1 1.3 3.3 1.4 1.4
Qlat 0.5 10 2.4 6.1 2.3 1.8
Qlat 0.5 100 2.5 9.9 2.6 5.1
Qlat 0.7 1 1.4 2.8 1.4 1.3
Qlat 0.7 10 2.2 4.4 2.4 1.9
Qlat 0.7 100 2.5 10.1 3.3 5.2
Qlat 0.9 1 1.0 2.2 1.4 1.5
Qlat 0.9 10 3.0 4.0 4.5 2.3
Qlat 0.9 100 3.1 12.2 8.3 9.1
Qcon 0.5 1 0.8 1.8 13.3 2.4
Qcon 0.5 10 5.0 3.0 23.9 7.8
Qcon 0.5 100 12.3 22.4 117.2 35.2
Qcon 0.7 1 0.5 1.1 17.1 6.4
Qcon 0.7 10 6.6 3.0 49.2 13.8
Qcon 0.7 100 17.3 29.9 123.3 45.6
Qcon 0.9 1 0.1 0.4 20.5 11.7
Qcon 0.9 10 0.8 0.5 92.9 21.0
Qcon 0.9 100 23.6 42.3 127.2 58.8

13148



Table 7: RMSE for p = 100, n = 200, τ = 140, ϑ = 2 and µ(1) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) inspect(Q̂) CPT-CC(I) inspect(I)

Q(2) 0.5 1 1.3 3.4 1.4 1.4
Q(2) 0.5 10 11.5 8.9 3.9 3.3
Q(2) 0.5 100 14.1 18.1 3.5 9.0
Q(2) 0.7 1 1.2 3.1 1.4 1.3
Q(2) 0.7 10 27.9 14.4 5.3 5.3
Q(2) 0.7 100 36.8 21.6 5.6 12.4
Q(2) 0.9 1 0.7 2.1 1.5 1.3
Q(2) 0.9 10 43.9 17.7 11.9 8.1
Q(2) 0.9 100 68.7 29.7 18.7 18.3
Qlat 0.5 1 1.3 3.3 1.4 1.4
Qlat 0.5 10 7.1 6.5 3.2 2.8
Qlat 0.5 100 5.3 20.2 3.5 9.5
Qlat 0.7 1 1.4 2.8 1.4 1.3
Qlat 0.7 10 11.4 8.9 3.8 3.0
Qlat 0.7 100 13.8 24.4 7.0 13.0
Qlat 0.9 1 1.0 2.2 1.4 1.5
Qlat 0.9 10 40.9 8.4 9.1 4.5
Qlat 0.9 100 37.6 28.1 19.1 17.6
Qcon 0.5 1 0.8 1.8 13.3 2.4
Qcon 0.5 10 42.8 5.2 79.8 15.4
Qcon 0.5 100 79.7 50.7 116.5 52.6
Qcon 0.7 1 0.5 1.1 17.1 6.4
Qcon 0.7 10 23.1 6.9 114.2 23.9
Qcon 0.7 100 82.9 57.8 118.2 62.7
Qcon 0.9 1 0.1 0.4 20.5 11.7
Qcon 0.9 10 1.4 4.2 128.4 29.1
Qcon 0.9 100 84.1 67.5 124.7 71.2
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Table 8: RMSE for p = 100, n = 200, τ = 140, ϑ = 3 and µ(0) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) CPT-CC(I) inspect(Q̂) inspect(I)

Q(2) 0.5 1 0.5 0.6 1.4 0.5
Q(2) 0.7 1 0.4 0.6 1.2 0.5
Q(2) 0.9 1 0.2 0.5 0.8 0.6
Qlat 0.5 1 0.5 0.6 1.3 0.5
Qlat 0.7 1 0.4 0.5 1.2 0.5
Qlat 0.9 1 0.4 0.6 0.9 0.5
Qcon 0.5 1 0.3 6.3 0.8 0.8
Qcon 0.7 1 0.1 7.2 0.4 2.1
Qcon 0.9 1 0.0 10.2 0.1 2.8
Q(2) 0.5 10 0.6 0.7 1.4 0.6
Q(2) 0.7 10 0.6 0.8 1.4 0.6
Q(2) 0.9 10 0.4 0.7 1.0 0.6
Qlat 0.5 10 0.7 0.7 1.5 0.6
Qlat 0.7 10 0.6 0.8 1.4 0.6
Qlat 0.9 10 0.5 0.8 1.0 0.6
Qcon 0.5 10 0.3 12.3 0.9 1.2
Qcon 0.7 10 0.2 15.5 0.5 2.0
Qcon 0.9 10 0.0 16.4 0.2 6.2
Q(2) 0.5 100 0.7 0.7 2.9 1.0
Q(2) 0.7 100 0.5 0.7 2.2 1.1
Q(2) 0.9 100 0.3 1.1 1.5 1.4
Qlat 0.5 100 0.7 0.7 2.8 1.1
Qlat 0.7 100 0.7 0.8 2.2 1.2
Qlat 0.9 100 0.5 0.8 2.0 1.4
Qcon 0.5 100 0.4 40.2 1.3 8.1
Qcon 0.7 100 0.1 87.0 0.8 12.4
Qcon 0.9 100 0.0 117.2 0.3 18.6
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Table 9: RMSE for p = 100, n = 200, τ = 140, ϑ = 3 and µ(Σ) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) CPT-CC(I) inspect(Q̂) inspect(I)

Q(2) 0.5 1 0.5 0.6 1.4 0.5
Q(2) 0.7 1 0.4 0.6 1.2 0.5
Q(2) 0.9 1 0.2 0.5 0.8 0.6
Qlat 0.5 1 0.5 0.6 1.3 0.5
Qlat 0.7 1 0.4 0.5 1.2 0.5
Qlat 0.9 1 0.4 0.6 0.9 0.5
Qcon 0.5 1 0.3 6.3 0.8 0.8
Qcon 0.7 1 0.1 7.2 0.4 2.1
Qcon 0.9 1 0.0 10.2 0.1 2.8
Q(2) 0.5 10 0.8 0.7 1.7 0.6
Q(2) 0.7 10 0.8 1.0 1.8 0.8
Q(2) 0.9 10 0.8 1.4 1.7 1.4
Qlat 0.5 10 0.6 0.7 1.7 0.6
Qlat 0.7 10 0.7 0.8 2.2 0.7
Qlat 0.9 10 0.8 1.1 1.4 0.8
Qcon 0.5 10 0.7 13.4 0.9 2.2
Qcon 0.7 10 0.7 15.2 0.5 4.1
Qcon 0.9 10 0.2 27.3 0.2 8.4
Q(2) 0.5 100 0.7 0.8 3.1 1.1
Q(2) 0.7 100 0.8 1.0 3.2 1.5
Q(2) 0.9 100 0.7 1.7 3.8 2.1
Qlat 0.5 100 0.8 0.8 3.0 1.1
Qlat 0.7 100 0.9 0.8 3.6 1.2
Qlat 0.9 100 1.0 3.0 3.7 1.9
Qcon 0.5 100 2.6 65.1 5.9 16.2
Qcon 0.7 100 4.4 99.5 10.8 27.4
Qcon 0.9 100 8.4 113.9 19.0 38.3
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Table 10: RMSE for p = 100, n = 200, τ = 140, ϑ = 3 and µ(1) changes. The smallest value is
given in bold. 1000 random samples were used for each RMSE estimate.

Q ρ J CPT-CC(Q̂(W(4))) CPT-CC(I) inspect(Q̂) inspect(I)

Q(2) 0.5 1 0.5 0.6 1.4 0.5
Q(2) 0.7 1 0.4 0.6 1.2 0.5
Q(2) 0.9 1 0.2 0.5 0.8 0.6
Qlat 0.5 1 0.5 0.6 1.3 0.5
Qlat 0.7 1 0.4 0.5 1.2 0.5
Qlat 0.9 1 0.4 0.6 0.9 0.5
Qcon 0.5 1 0.3 6.3 0.8 0.8
Qcon 0.7 1 0.1 7.2 0.4 2.1
Qcon 0.9 1 0.0 10.2 0.1 2.8
Q(2) 0.5 10 1.6 1.2 3.2 1.2
Q(2) 0.7 10 2.5 1.6 5.4 1.5
Q(2) 0.9 10 5.7 3.0 6.5 2.7
Qlat 0.5 10 1.4 1.1 2.3 0.8
Qlat 0.7 10 1.7 1.2 2.4 1.0
Qlat 0.9 10 3.2 1.7 2.5 1.4
Qcon 0.5 10 3.7 17.6 0.9 4.2
Qcon 0.7 10 1.7 39.9 0.6 8.2
Qcon 0.9 10 0.3 81.9 0.2 11.3
Q(2) 0.5 100 1.8 1.3 8.7 2.7
Q(2) 0.7 100 3.4 2.0 12.1 3.5
Q(2) 0.9 100 30.2 4.0 18.5 6.8
Qlat 0.5 100 1.4 1.2 8.3 2.6
Qlat 0.7 100 2.3 1.8 12.6 3.0
Qlat 0.9 100 6.7 5.5 18.5 5.6
Qcon 0.5 100 71.0 88.5 36.6 36.2
Qcon 0.7 100 80.8 99.8 42.5 46.7
Qcon 0.9 100 83.8 111.7 49.7 55.2
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Table 11: ARI of classifying normal and anomalous observations when p = 100, n = 1000,
(ϑk)

3
k=1 = (1, 2, 3), {(sk, ek)}3k=1 = {(300, 330), (600, 620, ), (900, 910)} and J1 = {1}, J2 =

{1, . . . , 10}, J3 = {1, . . . , 10, 46, . . . , 55, 91, . . . , 100}, based on 100 repetitions. Point anomalies
are placed at 10 fixed locations, each randomly affecting a single variable with size sampled from
N(0, 4 log p). The largest value for each data setting is given in bold.

Q ρ µ(·) Pt. anoms CAPA-CC(Q̂(4)) MVCAPA inspect(Q̂) inspect(I)

Q(2) 0.5 0 – 0.27 0.18 0.04 0.00
Q(2) 0.5 0 0.39 0.37 0.01 −0.02
Q(2) 0.9 0 – 0.60 0.03 0.16 0.00
Q(2) 0.9 0 0.68 0.26 0.02 −0.02
Q(2) 0.5 Σ – 0.23 0.20 0.05 0.00
Q(2) 0.5 Σ 0.40 0.37 0.01 −0.02
Q(2) 0.9 Σ – 0.53 0.05 0.13 −0.00
Q(2) 0.9 Σ 0.61 0.26 0.03 −0.02
Q(2) 0.5 0.8 – 0.23 0.17 0.05 0.00
Q(2) 0.5 0.8 0.39 0.35 0.01 −0.02
Q(2) 0.9 0.8 – 0.50 0.07 0.13 0.00
Q(2) 0.9 0.8 0.62 0.27 0.02 −0.02
Qlat 0.5 0 – 0.21 0.12 0.06 0.00
Qlat 0.5 0 0.31 0.23 0.04 0.06
Qlat 0.9 0 – 0.34 0.08 0.12 0.00
Qlat 0.9 0 0.40 0.20 0.07 0.04
Qlat 0.5 Σ – 0.21 0.12 0.05 0.00
Qlat 0.5 Σ 0.29 0.25 0.08 0.07
Qlat 0.9 Σ – 0.34 0.09 0.08 0.00
Qlat 0.9 Σ 0.33 0.18 0.14 0.06
Qlat 0.5 0.8 – 0.23 0.14 0.05 0.00
Qlat 0.5 0.8 0.27 0.22 0.09 0.07
Qlat 0.9 0.8 – 0.33 0.07 0.09 0.00
Qlat 0.9 0.8 0.38 0.19 0.11 0.06
Qcon 0.5 0 – 0.47 0.00 0.07 −0.00
Qcon 0.5 0 0.53 0.16 0.02 0.01
Qcon 0.9 0 – 0.83 −0.00 0.28 −0.00
Qcon 0.9 0 0.83 0.10 0.08 −0.00
Qcon 0.5 Σ – 0.44 −0.00 0.06 −0.00
Qcon 0.5 Σ 0.50 0.11 0.03 0.00
Qcon 0.9 Σ – 0.66 −0.00 0.26 −0.00
Qcon 0.9 Σ 0.71 0.09 0.10 0.00
Qcon 0.5 0.8 – 0.43 0.00 0.04 −0.00
Qcon 0.5 0.8 0.52 0.11 0.02 0.00
Qcon 0.9 0.8 – 0.68 −0.00 0.30 0.00
Qcon 0.9 0.8 0.71 0.09 0.10 0.00
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