
Received September 30, 2021, accepted November 3, 2021, date of publication November 16, 2021,
date of current version November 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128382

An Abstract Machine Approach to Preserving
Digital Information
IVAR RUMMELHOFF 1, ELADIO GUTIÉRREZ 2, THOR KRISTOFFERSEN 1, OLE LIABØ3,
BJARTE M. ØSTVOLD 1, OSCAR PLATA 2, AND SERGIO ROMERO 2
1Norwegian Computing Center, 0373 Oslo, Norway
2Department of Computer Architecture, University of Malaga, 29071 Malaga, Spain
3Piql AS, 3045 Drammen, Norway

Corresponding author: Bjarte M. Østvold (bjarte@nr.no)

This work was supported in part by EUROSTARS under Project E!12494, and in part by the Regionale forskningsfond (RFF)
Oslofjordfondet under Project 285516.

ABSTRACT Preserving digital information for a very long time is difficult evenwhen using a durable passive
storagemedium such as photographic film stored under the right conditions. On film one can combine analog
descriptions, that is, visual and thus human-readable text and diagrams, with encoded digital information.
After hundreds of years, however, the formats used to represent and encode this information may have been
forgotten, and any surviving source code may not simply be compiled and run. Explaining how to interpret
data stored in a complex format runs the risks both of errors made today and of future misunderstandings.
We present a solution based on (1) a very simple abstract machine, (2) independent, technology-neutral
descriptions of the machine, preserved in analog form and aimed at future programmers and mathematicians,
and (3) a C compiler targeting this machine. Currently, our toolset supports storing and retrieving data in the
formats JPEG, TIFF and PDF/A, but other formats can be easily be added by adapting existing C programs for
processing these formats. Binaries for the abstract machine are preserved alongside the digital information
and the machine descriptions so that future generations can decode and present the information simply by
implementing this machine.

INDEX TERMS Formal specifications, data storage systems, programming, codecs, information represen-
tation, computer languages.

I. INTRODUCTION
Imagine that you are a future historian, alive 500 years from
now. You come across a durable digital storage medium
that you believe contains important historical information
dating back hundreds of years. The storage technology is
no longer in use and it is not described by your available
sources, and thus you do not know how to extract information
from it. However, those who made the medium and stored
data on it also provided an analog description, for example,
engraved on a metal plaque.1 This description can be read
directly, explaining to you the procedures to read data from
the medium and to interpret the data.

We assume the existence of an adequate storage medium.
Our approach addresses how to preserve formatted data on

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .
1Such plaques were used for this purpose aboard the two Pioneer space-

crafts on their journeys outside the Solar system.

the medium and how to ensure that it can be retrieved in
the future. The toolset that we describe directly supports pre-
serving data in certain formats and adding support for other
formats straightforward. Future retrieval of the data requires
doing some engineering work outlined in the description, but
the description is generic and need not be changed when
adding new formats. Our approach is independent of the type
of storage medium, except that it must be possible to store
both analog descriptions and digital data.

A. IMMEDIATE QUESTIONS
We introduce our approach by answering some questions.
Is there a medium available today that can reliably hold

data for 500 years? Yes, one such storage medium is dis-
cussed in Section VII-C.
Do you preserve the original files andmetadata?Yes, there

is no data conversion when producing the storage instances,
and the abstract machine can be used for extracting the orig-
inal files in addition to presenting their contents.

154914 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1165-5032
https://orcid.org/0000-0001-9748-9161
https://orcid.org/0000-0001-6591-4290
https://orcid.org/0000-0001-6922-4027
https://orcid.org/0000-0003-2233-0011
https://orcid.org/0000-0002-4405-8410
https://orcid.org/0000-0001-7300-9215

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

What is the cost of preparing data for storage and pro-
ducing the machine descriptions? Since we store the original
files, data in the supported formats have zero production cost,
and the storage cost is proportional to size. We currently
support the formats JPEG, TIFF and PDF/A. Additional data
formats require C code to render the data to the output devices
of our abstract machine. The human readable descriptions
are identical for every storage instance and thus have zero
production cost, but incur a constant storage cost for the
analog medium.
Will future historians and their helpers be able to under-

stand the machine descriptions? We only assume that they
will understand texts from our time that use the Latin alpha-
bet, Arabic numerals and rudimentary English, and that are
self-contained except for very basic technological concepts.
Will they have the resources to implement this machine? A

basic implementation requires very little effort. Moreover, the
descriptions will be the same for all storage instances. Thus,
the cost can be amortized across all the instances they have
available.
For images and documents, why not just store them as

analog pictures on a visual medium such as film or paper?
Analog, unencoded storage supports neither error correction
nor compression, and the original files will be lost. Moreover,
many types of digital information do not have any obvious
visual representation.

B. OUR APPROACH AND CONTRIBUTIONS
Our approach to long-term preservation of digital informa-
tion is realized as a toolset which includes a C compiler,
an abstract machine targeted by the compiler, and descrip-
tions explaining the machine to future readers. The process
is automatic for information in supported formats, currently
JPEG, TIFF and PDF/A. Adding support for other formats
will usually involve porting an existing C program to this
machine (and its I/O devices).

The use of an abstract machine to be implemented in
the future allows us to sidestep two problems of long-term
preservation of digital information: (1) the limited lifespan
of the software used to interpret the stored information,
and (2) the need to explain the media and storage formats
themselves to future readers. The price is the future effort
needed to understand and implement the machine. In other
words, machine code serves as a universal format. For exam-
ple, the most complex format we currently support, PDF,
is described in a 968-page document, which would require
a significant effort to understand and implement. By con-
trast, our approach enables competent programmers to render
PDF documents after following a series of simple steps in
a 17-page document. There is no need to understand PDF or
any other of the supported formats.

Having a C compiler that targets our abstract machine was
essential, beyond supporting preservation of formats defined
in C code: We implemented key features as either C with
embedded assembly code or by porting C libraries to the
machine. A floating point library was required for PDF/A

support and also for decoding film frames from storage, and
a compression library was required for self-extracting code.
Implementing this functionality from scratch in assembly
language would have been unfeasible.
Our contributions are the following:

First, a working toolset which assumes that we have C
programs for rendering the data formats to be preserved. Our
compiler, based on GCC, supports the full C language, but
not all libraries since the targeted abstract machine is limited.
We have produced several implementations of the abstract
machine using different programming languages: An imple-
mentation in F# was developed while still experimenting with
different machine features. Later, a C implementation was
added with performance as a key goal.

Second, three complete and alternative descriptions of the
abstract machine, aimed at different audiences:

S1. A guide to building the machine through a series of
steps, including tests to check correctness and guide
programming. This description should be easy to under-
stand and follow for future programmers with no knowl-
edge of today’s hardware, software platforms or tools.

S2. An instruction set architecture (ISA) specification of the
machine suitable for contemporary computer scientists.

S3. A self-contained mathematical specification that should
be easy to understand for readers with some background
in formal mathematics or computer science both today
and in the future.

Producingmultiple descriptions has helped decide and clarify
the features of the abstract machine and avoid ambiguities.
Moreover, having descriptions of the machine from two very
different angles should be helpful to future readers with vary-
ing knowledge and backgrounds.

Third, we have validated our approach in two ways:

• We performed an experiment where an inexperienced
programmer, unfamiliar with our abstract machine, used
the guide (S1) to write a partial implementation; the
experiment is described in Section VI-A. This showed
that the guide is understandable and that the resources
required to produce a partial implementation today are
not prohibitive.

• We have a program for testing that implementations
of the machine conform to the specification, see
Section VI-B. All our implementations passed these
tests, including the implementation from the experiment.

Our approach can be realized using any long-term stor-
age technology that can store both digital data and human-
readable instructions. Switching storage medium would,
however, require new driver code for the storage device.

II. MACHINE DESCRIPTIONS
We have made three different descriptions of the abstract
machine aimed at three different audiences, two of which can
also be future audiences. In the following sections we illus-
trate each description by showing fragments of it that involves
a running example: JZ FWD, one of two conditional jump

VOLUME 9, 2021 154915

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

TABLE 1. The instruction set architecture specification of the JZ FWD operation.

instructions in the machine. For reference, the description S2
in reproduced in full in Appendix A.

A. GUIDE TO BUILDING THE MACHINE (S1)
The guide to building the machine S1 is aimed at future
programmers, and therefore we assume no knowledge about
hardware and software. Also, we use a generic vocabulary
and carefully define all terms.

The semantics of each machine operation is described
as a series of simple operations that the programmer must
implement. To illustrate the guide, here is shown the main
loop with only the description of the JZ FWD operation
(opcode 03 16).2

Every time the machine starts, initialize the memory as
described in Section 2.6. Then execute the main procedure
repeatedly until the value of T is 1 2. The main procedure
must carry out the following steps.

1 Initialize the temporary 64-bit element k to 0.
2 Fetch 1 octet into k .
3 If the value of k is
03 16 then

1 Initialize the temporary 64-bit elements a and
x to 0.

2 Fetch 1 octet into a.
3 Pop x.
4 If the value of x is 0, then increment PC by a.

4 If the value of k does not occur in the list in the
previous point, then set T to 1 2.

The words Fetch and Pop refer to procedures that have been
previously defined in a similar manner in the guide.

The guide divides the description of the operations into a
set of manageable chunks, each adding another set of oper-
ations to the machine. For each chunk there is a small test
case, consisting of a program to be entered in the memory
and the correct contents of the memory after running it.
To facilitate the definition of these test cases, a Common Lisp
implementation of the machine was developed in parallel
with the description.

B. INSTRUCTION SET ARCHITECTURE (S2)
The instruction set architecture specification S2 is aimed
at contemporary computer scientists, including embedded

2In the guide all non-decimal numbers are explicitly indicated by sub-
scripts indicating the number base in decimal.

developers, that is, developers writing programs to be run
directly on a processor. The semantics of each operation is
described as a series of effects in a compact table format.
As an example, Table 1 shows only the JZ FWD operation:
The operations fetch(), pop(), and push() are described in
pseudocode in the complete specification, which appears in
Appendix A.

C. MATHEMATICAL DESCRIPTION (S3)
This description, using formal logic, is aimed at future readers
with some theoretical background. In order to avoid ambi-
guities, the description is formulated in a subset of the lan-
guage of the Coq Proof Assistant [1] and the Coq Equations
plugin [2], but no knowledge of Coq or similar systems is
required. The description contains some explanatory text, but
leaves out the detailed formal proofs. In some cases we also
simplified the definitions (compared to the Coq code) since
the purpose is to give a precise description of the machine for
human readers.

The description is mostly self-contained. In particular,
we explain binary representations, monads and monad trans-
formers before defining the machine using a form of
‘‘big-step semantics’’ consisting of:
1) a monad representing the possible states and state

transitions,
2) an ‘‘implementation’’ in thismonad of a single execution

step of the abstract machine,
3) how to construct the machine’s initial state,
4) a partial relation expressing the relationship between

initial and terminal states.
The core of the implementation (2) starts as follows:

Definition exec’ opcode : Comp 1 :=
match opcode with
| NOP⇒ return’ •
| JUMP⇒ pop’ >>= setPC’
| JZ FWD⇒

offset ::= next’ 1;
x ::= pop’;
if x =? 0
then pc ::= get’ PC;

setPC’ (pc + offset)
else return’ •

| JZ BACK⇒

Here x ::= u; v is an abbreviation for u >>= (λ x⇒ v) .

154916 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

III. DESIGN AND IMPLEMENTATIONS OF THE MACHINE
A. DESIGN GOALS
We have designed the machine to be:

1) as simple as possible,
2) a suitable target for a C compiler,
3) reasonably efficient.

By ‘‘simple’’ we mean a machine which is easy to describe,
understand and implement. This will not only reduce the
implementation effort, but also reduce the potential for mis-
understandings. A simpler machinemay be less efficient once
implemented, which is a disadvantage. However, we assume
this to be an inconvenience rather than a problem for two rea-
sons: When some stored data has been presented on a future
output device, it can be stored in the output device format
so that the processing never has to be repeated. Secondly,
if future programmers want to optimize for performance, they
can use the simple machine and its code as a starting point.

The machine should be a compilation target for C so that
we can use (existing and new) C programs for processing the
content formats and encodings.

B. DESIGN CHOICES
1) STACK AND MEMORY
We decided that the abstract machine should be a stack
machine, with a program counter (PC) and a stack pointer
(SP), but no other registers. The presence of a stack is
assumed by C compilers, but we avoid explanations of regis-
ters and special instructions for dealing with them.

The machine does not store code and data in distinct parts
of memory. With this arrangement, the machine can load
code from the storage medium. For example, it can load a
format decoder, and then starting using the decoder on data
from same medium, all directly using the same execution
machinery (process). With a separation between code and
data, doing this would have required special instructions in
the machine, thus making it more complicated.

2) ADDRESSING
The machine has a 64-bit address space since 32 bits may be
too little for some applications. In practice, however, using
more than 232 bytes of memory will be slow. Each byte in
memory is addressable since this is needed for realizing C
byte arrays directly and efficiently. The following instructions
have immediate operands: those that push constants onto
the stack and (for efficiency) the two branching instructions.
The branching instructions also use PC-relative addressing,
whereas all other instructions pop addresses and other argu-
ments from the stack. For simplicity, the stack operations all
use 64-bit unsigned integers. C has 64-bit integers, and they
are efficient on present-day architectures.

3) INSTRUCTION SET
The instruction set of the machine is made up of the fol-
lowing, here organized by purpose: termination and no oper-
ation (EXIT, NOP); jump and branching (JUMP, JZ FWD,

JZ BACK); setting the stack pointer or pushing the pro-
gram counter or the stack pointer onto the stack (SET SP,
GET PC, GET SP); pushing the constant 0 or immedi-
ate operands (PUSH0, PUSH1, PUSH2, PUSH4, PUSH8);
reading and writing to memory (LOAD1, LOAD2, LOAD4,
LOAD8, STORE1, STORE2, STORE4, STORE8); integer
or binary arithmetic (ADD, MULT, DIV, REM, POW2); log-
ical operators (LT, AND, OR, NOT, XOR); input and out-
put (PUT BYTE, PUT CHAR, ADD SAMPLE, SET PIXEL,
NEW FRAME, READ PIXEL, READ FRAME). A detailed
description of the instructions is found in Appendix A-F.

4) INPUT AND OUTPUT DEVICES
The machine has a single input device which is used for
reading monochrome images from the storage medium.
These images are presented to the machine as a set of two-
dimensional byte arrays, called frames. Each frame can have
different dimensions. The encoding used in these frames is
handled by the initial program which is included with the
machine descriptions, see Section V-A.

The machine has four output devices. The image out-
put device produces two-dimensional arrays of RGB values.
There is also a stereo audio device, which can be synchro-
nized with the image output device to simulate a series of
images with sound.3 Finally, there are output devices for
Unicode text and raw bytes. We opted for dedicated I/O
instructions rather than memory-mapped I/O since explain-
ing the former seemed simpler. The machine’s devices are
detailed in Section A-E.

5) OMISSIONS
The machine has no native instructions for signed integers.
Instead, they are handled using ‘‘pseudo-instructions’’ that
are replaced by sequences of native instructions by the assem-
bler. Floating-point numbers are also not part assembly lan-
guage. Instead, they are handled by the compiler using a
C library. Similarly, the machine also leaves all memory
management to the software.

6) INSTRUCTION SELECTION
We arrived at this design through an iterative process. Early
on, more radical solutions were ruled out since producing
an efficient C compiler for these architectures would be
very difficult; and floating point numbers were dropped in
order to simplify the machine descriptions. Instructions for
signed integers were eliminated after benchmarks involv-
ing PDF rendering indicated that this had little effect on
the performance.4 In the process, a branching instruction
taking a signed byte as immediate operand was replaced
by the two separate instructions we have now. This sim-
plified the description while simultaneously improving the
performance.

3This is not relevant for the currently supported formats.
4The binary size increased, but the effect on the execution time was

minimal (for the C implementation of the machine mentioned below).

VOLUME 9, 2021 154917

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

Our instruction set is suboptimal in the sense that most
8-bit values are not opcodes. Adding more instructions could
make the binaries more compact and efficient, but we have
instead prioritized keeping themachine descriptions short and
simple. Since they are easy to explain, instructions have been
included for most unsigned arithmetic operators in C, but not
for shifting bits to the left or right. This instead has to be
implemented using multiplication and division (and a special
instruction for computing powers of two). The performance
impact of this decision has not been assessed.

7) OTHER ABSTRACT MACHINES AND INSTRUCTION
SET ARCHITECTURES
Separately, the features and design choices of our abstract
machine are not very original. So why not use an established
machine architecture instead? Most importantly, we wanted
to try out different choices in order to strike the right balance
between the design goals. Moreover, none of the existing
machine architectures we looked at turned out to be a suitable
starting point. Those having C compilers that produce rea-
sonably efficient programs were too complex to describe and
implement, whereas making such a compiler for the simplest
architectures would be very difficult. In particular, it is hard
to compile C code to efficient programs for machines that do
not essentially follow the von Neumann architecture.

Writing a compiler from scratch is difficult regardless of
the architecture. Hence, we looked for ways to build on
existing work and ended up defining a new target for GCC.
Another option we considered was to use as starting point
a compiler for WebAssembly [3], adding a post-processing
step that translates such bytecode to the simpler instruction
set of our machine. However, this would still be a lot of
work even if we were to choose a subset of WebAssembly
as our instruction set. The fact that WebAssembly is safer
and (in some sense) higher level than C also create some
complications. In particular, it would be difficult to include
I/O instructions as inline assembly code.

C. CURRENT IMPLEMENTATIONS
The main idea of our approach is that people in the future
should be able to consume our data (even if the data for-
mats are no longer understood) by implementing the abstract
machine using the tools at their disposal. Nevertheless,
we have also implemented the machine ourselves.5

1) IMPLEMENTATION IN F#
We first implemented the machine in F# and used this
implementation to experiment with different architectures
and instruction sets. Performance was never a priority for
this implementation, but simplicity and conceptual clarity.
Thus, it looks very much like the mathematical description
in Section II-C:

5In addition to the implementations mentioned here, a second C imple-
mentation was developed while working on the compiler, and we have partial
implementations in Python and Common Lisp.

member m.Step () =
match m.NextOp 1 |> int8 with
\ldots
| JUMP -> m.PC <- m.Pop ()
| JZ_FWD ->

let offset = m.NextOp 1
if m.Pop () = 0UL
then m.PC <- m.PC + offset

\ldots

The F# implementation also has some rudimentary features
for debugging.

2) IMPLEMENTATION IN C
When we started to compile more complex programs, there
was a need for a faster implementation, which we wrote in C.
Like the F# version, it is just a simple interpreter which
executes the instructions one by one:

Nevertheless, this implementation is relatively fast, par-
tially at the expense of memory safety: Since the assembler
produces programs that are position independent, we can
represent memory addresses using C pointers.6

D. THE ASSEMBLER
Since the work on the compiler had to start before the
instruction set was finalized, we decided to define a distinct
assembly language as an abstraction barrier. The correspond-
ing assembler also handles issues such as the fact that the
native branching instructions can jump at most 256 addresses.
Rather than defining a new target architecture for an existing
assembler, we implemented the assembler from scratch in F#
using the FParsec parser combinator library [4].

1) ASSEMBLY LANGUAGE
The assembly syntax we use is reminiscent of the GNU
Assembler, but with some important differences. The com-
plete grammar is included in Appendix B. The assembly lan-
guage has many more instructions than the abstract machine.
Additional ‘‘pseudo-instructions’’ are converted to sequences
of machine instructions by the assembler. Notable pseudo-
instructions are those that deal with signed integers and
the unlimited branching instructions. Since the number of
machine instructions needed for branching depends on the

6This assumes that the computer running the implementation has 64-bit
addresses and little-endian memory representation like our abstract machine.

154918 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

jump distance, the assembler needs several passes to get the
references right. Some optimizations have the same effect.
For instance, a short jump may be translated into a PUSH0
followed by JZ FWD or JZ BACK.

The assembly language has several features intended to
make writing programs for a stack machine less confusing.
They are particularly helpful when writing assembly pro-
grams by hand. The following recursive subroutine outputs
a 64-bit unsigned integer in decimal notation:

wr i t e_dec ima l_numbe r :
0 : r e t u r n add r e s s , 1 : a rgument
push ! (/ u $1 10)
jump_zero ! ! $0 nex t
c a l l ! w r i t e_dec ima l_numbe r # Recu r s i on

nex t :
s e t _ sp ! &1
ze r o = 48
put_char ! (+ (%u $1 10) z e r o)
re turn

Observe that the instructions can take complex expressions
(in prefix notation) as arguments. The assembler translates
these into stack operations. Here &n and $n denote the
address and value of the n’th (64-bit) element on the stack
before the statement is executed; andm consecutive exclama-
tion marks following an instruction indicate that the values of
m expressions should be pushed to the stack first. Otherwise,
the instruction must get its arguments from the existing stack.
For instance, return is an alias for jump, which means
‘‘jump to an address popped from the stack’’.

2) ASSEMBLER IMPLEMENTATION
Here is some of the code involved in the code generation for
the jump zero assembly instruction:

let bDist x = -256L<=x && x<=255L

let jz (d: int64) =
if d >= 0L
then [JZ_FWD; int8 d]
else [JZ_BACK; int8 <| abs d -1L]

let deltaJump d =
if d = 0L then []
elif bDist <| d - 3L then [PUSH0] @ jz (d - 3L)
elif d<0L then [GET_PC] @ pushNum (d-1L) @ [ADD;JUMP]
else
let f pushLength = d - int64 pushLength - 1L
pushFix f @ [GET_PC; ADD; JUMP]

let deltaJumpZero d =
if bDist <| d - 2L then jz (d - 2L)
else
let jump = deltaJump (d - 5L)
jz 3L @ [PUSH0] @ jz (opLen jump |> int64) @ jump

The assembler generates position independent bina-
ries, but tries to simplify expressions before generat-
ing the machine instructions. For instance, (+ label1
-label2) becomes a constant. When necessary, the gen-
erated machine code is prefixed with code that (at runtime)
adjusts the contents of data blocks referring to labels.

The assembler output is the program binary, as it should
be loaded into the memory of the machine, and a text file
containing the relative locations of labels that can be used
for debugging and a limited form of linking. However, it is
not possible to link these files like traditional object files.
Currently, the compiler gets around this by letting assembly
files play the role of object files. The linker essentially con-
catenates these files before calling the actual assembler, see
Section IV for details. It is also possible to leave more of this
to the assembler, which supports explicit import statements
but also leaving these implicit.

The assembler comes bundled with the F# implementation
of the abstract machine and has support for running the
generated binary without first having to write it to disk. It also
contains a basic testing framework which assembles and runs
a program before checking the final stack. This has been very
useful for catching bugs and avoiding regressions.

IV. THE COMPILER
The role of the compiler is to provide an assembly represen-
tation of the C programs, that eventually will be converted
to binary by the assembler (Section III-D). The assembly
language serves as an interface between the compiler and
the assembler. Actually, the developed compiler is a C cross-
compiler that must be compiled and executed on today’s
platforms (such as x86-64).

A. BASE COMPILER INFRASTRUCTURE
One of the key points in the design of the C compiler is
the adoption of an open-source compiler infrastructure as the
base system. We adopted GCC (GNU Compiler Collection)
for the compiler for several reasons: it is widely used, it has
a very stable design API between different versions, and it is
a full C compiler.

The core of the GCC C compiler (called cc1) is in charge
of translating the C language into the target assembly lan-
guage. Fig. 1 sketches the structure of cc1. Two intermediate
representations are used in different stages of the compi-
lation: the architecture-independent GIMPLE representation
for the abstract syntax tree passes, and the RTL (Register
Transfer Language) representation for those passes that are
target dependent. The translation of the GIMPLE format into
RTL is known as expansion. The expansion gives rise to a
sequence of RTL expressions (RTX) that can be seen as a
coarse approach of what will be the target assembly code.
An RTX is a sort of a Lisp expression.

The RTL makes use of the concept of register. The expan-
sion pass considers an infinite number of registers when the
first RTL is emitted, prior to the rest of transformations. These
symbolic registers are called pseudoregisters. Pseudoregis-
ters will finally be mapped to actual (architectural) registers
of the target architecture. This operation is known as register
allocation, which is carried out by the reload pass.
During the final pass, the RTX sequence is converted

into assembly statements. Designing a target involves pro-
viding a machine description that specifies the features of

VOLUME 9, 2021 154919

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

FIGURE 1. Overview of cc1 stages (some boxes like optimizations may involve many compiler passes).

FIGURE 2. Registers defined for compilation purposes.

the architecture. The GCC machine description defines valid
RTL patterns, fulfilling certain constrains such as the address-
ing modes, as well as which assembly instructions will be
generated.

B. STACKIFICATION SCHEME
One of the main challenges in designing the GCC backend
for the architecture of the abstract machine has been the
lack of registers. There are neither general-purpose registers
nor a frame pointer (FP). This fact requires reworking the
register allocation phase. An approach similar to that in [5]
has been followed. At first, a set of target general-purpose
registers is assumed. These registers are used as architectural
registers during the register allocation phase, but they are
finally mapped to stack positions when the assembly code is
generated.

Fig. 2 shows these target registers. The PC is an implicit
register. The FP register is used by the compiler until the
register allocation phase, where it is removed (as it is not
an actual register in the abstract machine). Basically, FP is
expressed as a function of SP, according to certain elimination
rules set by the target description.

TR is an instrumental register that represents the top of
the stack (TOS). Writing to it involves pushing a word on
the stack. Reading from it involves popping a word from the
stack. This is not a general-purpose register, but it is used
to express temporary computations requiring moving data
from/to the stack, and consequently it must only be handled
following certain rules.

Finally, 16 general-purpose registers are defined (this
number was decided experimentally), named as AR, X1,
X2, . . .X15. The AR register is used by functions to return
a 64-bit value (or smaller).

Fig. 3 shows the stack layout allocated immediately after
the call to a given function, including the stack-mapped reg-
isters. Observe that the target must track SP in order to locate
the current position of the first general-purpose register.

FIGURE 3. Example of the stack layout after the prologue of a given
function.

In a function, SP can change in two ways: (1) explicitly,
for example, when pushing an argument on the stack (SP
is pre-decremented), and (2) implicitly, for example, when
operating on TR (in that case the GCC machinery has no
knowledge about this SP modification).

C. INSTRUCTION EXPANSION
During the expansion pass (see Fig. 1), the internal tree
representation (GIMPLE) is expanded via a set of canonical
RTL rules that must be included in the machine description
file. It is during this phase that the instrumental register TR is
used to express those temporary operations performed on the
top of the stack.

Observe that TR is a special register, and GCC has to be
instructed not to use it in a general way. One must avoid per-
forming transformations that give rise to wrong programs, for
example, due to a stack imbalance. With this aim, some oper-
ations on TR have been defined in the machine description
using theunspecRTL clause, which imposes certain restric-
tions on the compiler when transforming these RTL expres-
sions. For example, consider the transferdst ← TR - TR.
What does it mean? Perhaps its meaning is not dst ← 0,
as probably the GCC machinery would infer. Perhaps the
developer’s purpose is to express popping two operands from
the stack, subtracting them and writing the result to dst.
The TR register should be used only for operations and
transformations allowed in the machine description, but for
nothing else. These RTL patterns define basic actions like

154920 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

FIGURE 4. GCC toolchain for the abstract machine target.

push (TR ← operand), pop (dst ← TR) and arithmetic
operations (TR ← TR op operand), among others.
An example illustrating the expansion process is included

in Appendix C-A.

D. COMPILER TOOLCHAIN
One of the goals when designing the C compiler has been to
keep things as conventional as possible, in such a way that
existing C projects could be ported and built with minimum
effort (for example, consider the effort of adapting configu-
ration scripts, makefiles, etc.).

In the standard compilation flow, gcc acts as a driver that
invokes several other programs: the C preprocessor (cpp),
the compiler itself (cc1), the assembler (as) and the linker
(ld). First, cpp translates the input C source file (for exam-
ple, prog.c) into an ASCII intermediate file (prog.i),
which cc1 translates into an ASCII assembly language file
(prog.s). Second, the assembler translates the assembly file
(prog.s) into a relocatable object file (prog.o). Third, the
linker combines one or several object files (including those in
libraries) into a single executable file.

No linkable binary object format was defined. As a
result, the above standard compilation flow needed to be
adapted. This led to the development of a compiler toolchain
that works completely in assembly format, deferring the
binary generation to external tools, after the linking pro-
cess. With this purpose, the following file types were
defined:
• Assembly Object: The result of applying the program as
to the cc1 output. The extension .o is used for these
objects. Basically, it is the same assembly file generated
by cc1 where a unique suffix is added to the local
symbols (local symbols refer to labels or abbreviations
that are not declared as global with the EXPORT clause).
The aim of this renaming process is to assure that local
symbols in one object will not conflict with other local
symbols (with the same name) in another object when
combining several objects together during the linking
process.

• Assembly Executable: The result of combining multiple
assembly objects, including those coming from libraries.
This linking process is carried out by the ld program.

Fig. 4 shows the compilation flow. Programs as and ld
have been implemented as shell scripts. Note that the as
script shown here is not the assembler tool in charge of
generating the final binary.

The ld script has the ability to create a true executable
by means of a shebang header added to the final assembly
output. This feature is especially useful for testing the com-
piler output on today’s platforms, where the compiler has
been compiled. This way, the final output of the compiler,
the assembly executable, is a concatenation of: (1) a shebang
header, that enables its execution; (2) the crt0.o startup
file, which is placed at the very beginning; (3) all object files
of sources being compiled (which are really assembly files);
and (4) the standard C libraries, and other libraries provided
on the command line.

E. REMARKS ON THE COMPILER DEVELOPMENT
The compiler backend for the abstract machine has been
designed for GCC version 10.2.0 which has resulted in a
robust and efficient C cross-compiler. It should be mentioned
that the development of the backend has involved a great
effort of validation and experimental work, not only with
the specific applications but with many other benchmarks
(see Appendix C-E). To carry out an efficient testing, some
companion tools have been developed, such as a fast abstract
machine emulator and an in-RAM file system generator. As a
final remark, we are considering extending the compilation
system for C++, in order to support other format renderers
written in that language.

V. PROGRAMMING THE MACHINE AND ITS LIBRARIES
The software for the abstract machine is primarily compiled
from C, but with some parts in assembly language such as
in the I/O library, which must use the native I/O instructions.
We also use some assembly language in the initial program
to keep its size down.

VOLUME 9, 2021 154921

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

FIGURE 5. A film frame in boxing format, with a magnification of the
upper-left corner superimposed.

A. THE INITIAL PROGRAM
Most of the code that is executed by the machine is read from
the digital storage medium via the input device. To start the
process of reading from the input device, an initial program
must be in place. This initial program depends on the concrete
storage medium in use; thus the following discussion will
refer to ‘‘frames’’ and the ‘‘boxing library’’ (SectionV-C) that
decodes frames as data.

The initial program uses a fragment of the boxing library
to load rendering code and the full boxing library from the
film, but cannot be loaded like this itself. Instead, it must
be printed in human-readable form on the storage medium
so that it can be placed in the memory of the machine
before it is started. Self-extracting code is used to make
the initial program as short as possible. We use a specially
adapted version of the XZ Embedded compression library
intended for embedded systems where small code size is
important. To further reduce the size of the compiled code,
all libc calls have been replaced with as trivial equivalents as
possible.

B. INPUT AND OUTPUT
To add support for preserving a new file format, one needs a
C library for the format. Such libraries are available for most
image and document file formats used in digital preservation.
The library has to support decoding from memory buffers
instead of relying on file I/O. Many support this out of the
box, either through the library API or compile time settings.
The library also cannot use files for temporary storage of data,
and it must be adapted to use the I/O library of the abstract
machine. This is a simple C library that lets programs access
the input and output devices.

C. DECODING INPUTS: THE BOXING LIBRARY
On the film storage medium of Section VII-C, digital
data is stored in high capacity 2D-barcodes written to
the film as monochrome images, see Fig. 5. Since most
commonly available 2D-barcode formats have relatively
low capacity, the company selling the film has developed
a custom format for it. This format is called the box-
ing format, and is supported by an open-source library
written in C.

D. SUPPORTED FORMATS
1) PDF/A
The PDF renderer is based on Ghostscript version 9.52. The
core of Ghostscript is a Postscript interpreter implemented
in C, and the PDF rendering program is implemented as
Postscript code that is executed on this interpreter.

The Ghostscript C code is portable, so it can be built on
many different machine architectures and operating systems.
However, to make the code build and run successfully on the
machine, it was necessary to make some modifications to it.
We also had to write a simple device driver to interface the
program with the machine’s graphical output device.

2) JPEG AND TIFF
The TIFF renderer is libtiff version 4.1.0 and the JPEG ren-
derer is version 9d of 12-Jan-2020 from Independent JPEG
Group. Both are mature and flexible C implementations that
have been deployed tomany hardware architectures and oper-
ating environments, often with limited hardware resources.
Therefore, supporting preserving these data formats required
very little effort.

VI. VALIDATING THE GUIDE TO BUILDING THE MACHINE
The guide to building the machine (S1) is essential to the
success of our approach, and thus we have validated it. This
took the form of an independent implementation of the guide
by a programmer not familiar with the machine descriptions
or with the general work.

A. EXPERIMENT
To validate the guide to building the machine we had a
programmer implement a machine using the guide. The pro-
grammer was given a previous version of the guide and
nothing else.

a: THE PROGRAMMER
The programmer is a researcher at the Norwegian Computing
Center with a master’s degree in image processing and com-
puter vision, and a PhD in image processing. He had previ-
ously worked 2 years as a software developer. On starting his
task he had only superficial knowledge of the work described
in this article, but he was told that the purpose of the machine
was long-term storage.

b: TASK EXECUTION
He spent 42.5 hours implementing a machine while keeping
a brief development log and submitting code to a version
control repository. The time spent included 3 hours docu-
menting his results and commenting in writing on the guide.
The work was done over a one-month period, interspersed
with other unrelated tasks. He did not consult with others
on his task except for the following: He got confirmation on
two typographic errors that made tests given in the guide fail
unintentionally, and he got explained the mathematical part
of the definition of the modulo operation.

154922 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

c: SCOPE
During the experiment we decided to reduce the scope of the
task by leaving out the implementation of the input and output
device support of the machine. The reasons for this choice
were that programming device support is time-consuming
since it depends on the implementation platform’s own I/O
support and furthermore that testing I/O support is difficult.
(The guide presently does not have tests for device handling.)

d: RESULTS
We left the choice of programming language to the program-
mer and he chose Python. He was able to implement the
whole machine without I/O devices and his code passed all
tests in the guide and the test program (Section VI-B).

e: REVISIONS TO THE GUIDE FOLLOWING
THE EXPERIMENT
After the experiment the guide was revised. The descrip-
tion of the memory elements was improved to clarify the
structure of the memory, and a figure was also added to
show this structure graphically. Several details in defini-
tions and tests were also clarified. Comments were added
to the mathematical description of the integer division and
remainder operations, to clarify informally the purpose of
these.

The experiment revealed two errors that were corrected: In
one test an incorrect variable was given, and in another test a
constant was wrong.

B. TEST PROGRAM
The test program for the abstract machine is an assembly
program that tests every branch of every instruction at least
once, thus providing full path coverage. Care was also taken
to detect errors that could potentially arise due to certain
types of corner cases in the operands. An important class
of corner case that was handled was detection of incorrect
implementation of instructions through the use of signed
arithmetic instead of unsigned.

The following tests were designed to detect corner cases in
the operands:

• The two conditional branch instructions are tested both
when the condition is true and when it is false.

• The ‘‘less than’’ test is tested on four different com-
binations of numbers, testing for when the operands
are equal, greater than, and less than, and also includes
a case when one operand has the most significant
bit (MSB) set (which would give an incorrect result if
signed arithmetic were used by the implementation).

• All two-argument arithmetic and logical operations are
tested on two pairs of operands, both of which include
one number that has the MSB set.

• The bitwise ‘‘not’’ operation is tested on two different
operands.

• The binary power operation is tested on three different
operands.

C. DISCUSSION
During the experiment, the programmer ran tests described
in the guide itself. After the experiment was over, the exper-
imental implementation was tested with the test program
(Section VI-B), and it passed all tests.

VII. PRESERVATION, RETRIEVAL, AND STORAGE
Here we explain how to preserve and retrieve data using our
approach: today using the toolset, and in the future building
a machine and using it to read and present the data from the
storage medium.We also discuss the general archival process
and a concrete storage medium that can be used.

A. PRESERVING AND RETRIEVING INFORMATION
1) PRESERVING INFORMATION WITH THE TOOLSET TODAY
To enable the toolset to support a new data format, X , one
must do the following:
1) Acquire a C language library, LX , for decoding and

rendering data on format X .
2) Adapt LX if needed to support reading from memory

buffers and decoding to memory buffers.
3) Write C code that feeds the LX decoder with the file

memory buffers read from the storage device.
4) Write C code that reads the decodedmemory buffers and

converts it to a format supported by the machine output
devices.

5) Use the C compiler to compile an updated version of the
toolset.

6) Update the table-of-content metadata to indicate that the
file format is supported.

Next, to preserve data one must do the following:
1) Write human-readable images of the descriptions to

the analog storage medium: the guide to building a
machine, S1, the mathematical description, S3, and the
initial program.

2) Encode both the archival and rendering software using
the boxing library.

3) Write the encoded data to the digital storage medium.
4) Store the storage media in a suitable location.

2) RETRIEVING INFORMATION IN THE FUTURE
Once future historians and their helpers have discovered the
storage location, they should do the following:
1) Use one of the descriptions to implement the abstract

machine. (Presumably, it will be most efficient to
digitize the storage medium in advance and let input
instructions read from these files. Perhaps the output
devices should write to files as well, instead of trying
to present the data directly to the user.)

2) Then, either by hand or using an optical char-
acter recognition device, enter the initial program
(see Section V-A).

3) Start the machine with the initial program in memory.
This will render the contents of the digital storage medium to
the future physical output devices (or extract the original files
if the start configuration of the machine is adjusted).

VOLUME 9, 2021 154923

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

B. THE ARCHIVAL STORAGE PROCESS
The storage process is typically performed as a subprocess
of maintaining a digital preservation system following the
guidelines in the OAIS process.7 This framework recom-
mends creating an archival information package (AIP) that is
stored in the digital archive. The AIP is typically produced by
a specialized archiving software, for example Archivematica,
that produces an AIPwith the original data, fixity information
and metadata. In this process the AIP is added to the archival
file system (AFS) that is written to the storage medium. The
AFS has some unique features that is not common for file
systems, such as the ability to reference both analog and
digital versions of the same file from the file system index
(table of contents). The AFS is agnostic in terms of physical
storagemedium, but a requirement is that it can hold analogue
2D images with at least two density levels and can resolve
symbols at MTF 70% or more. The minimum storage size
of the AFS is called a frame, corresponding to a sector on a
hard drive. The frame has a border with optical recognition
tracking codes and human readable frame index. Inside the
frame is the payload with digital data or analog images, where
the digital data is protected by intra and extra frame forward
error correction. The sequence of frames is called a reel, and
the first frame in the reel is called the ‘‘control frame’’. The
control frame can be compared to the master boot record of
hard drives, as it contains information and indexes to the rest
of the content on the reel, including the table of contents.

C. PHYSICAL STORAGE MEDIUM
Physical storage of both visual instructions and digital data
can be done using a special film made by the company Piql,8

This film is certified using ISO-based accelerated lifetime
test procedures for 1000 year of storage. Film has several
advantages: It lasts for a long time if stored properly; it can
store both analog information, that is, visual information,
and digital information on the same medium; and the visual
information can be read with a one-lens element magnifying
glass. The disadvantage is that the digital informationmust be
decoded from an analog representation on the film. Storing
information more directly and efficiently seems to require
some kind of hardware, and hardware has a limited lifetime.
One strategy to counter the hardware lifetime problem is
to repeatedly migrate the data to a new technology when
the current hardware technology nears its end of life. Note,
however, that in this case the problem of software lifetime
remains.

Piql stores films for its customers in the Arctic World
Archive,9 inside a decommissioned coal mine near Longyear-
byen at Svalbard. The archive is in use by archival insti-
tutions, museums and other organizations from more than
15 countries, including the Vatican Library, the European

7http://www.oais.info/standards-process/
8https://www.piql.com
9https://arcticworldarchive.org

Space Agency, and GitHub. The latter has deposited 21 TB
of their open-source software repositories.

The current write speed for this storage medium
is 40 MiB/s, and the goal is to support that speed or higher in
all parts of the creation processes. This is not affected by our
approach since the digital data is stored in its original format.
Writing the machine descriptions and software to each reel
incurs a small constant overhead, but compilation can be done
once in advance.

VIII. RELATED WORK
The idea to essentially use machine code as a universal data
format is related to that of the universal Turing machine, but it
was first suggested as an approach to long term preservation
by Lorie [6], which introduced the notion of a Universal
Virtual Computer (UVC). In subsequent work a concrete
instruction set architecture (ISA) was suggested, but to our
knowledge no compiler has yet been created. Their ISA
is also more complex and thus harder to implement than
our abstract machine, and it does not specify concrete out-
put devices. Instead, their programs will produce a ‘‘logical
view’’ of the preserved documents, for example, as XML.

Nguyen and Kay [7] have a simple abstract machine, and
their stated goal is that it should be possible to implement this
machine in an afternoon following its one-page description.
They also demonstrated SmallTalk-72 running in an imple-
mentation of this machine, but there is no compiler, and their
focus is more on preserving interactive software than digital
information. Joguin [8] aims for preserving software on film
much like us, but they too seem to miss a compiler producing
reasonably efficient code. Appuswamy and Joguin [9] aim
for database preservation. Braun et al. [10] have considered
secure long-term storage, but our machine has no security
features since they would only complicate it; compare for
example with WebAssembly [3].

What makes our approach unique is primarily the fact
that we have a fully working solution that handles complex
formats, and that there is a straightforward way to add support
for more such formats. Among other things, this means that
we have a C compiler, concrete descriptions of the abstract
machine for future readers, and a self-extracting initial pro-
gram to ‘‘bootstrap’’ the retrieval process. We also believe
that our machine strikes a better balance between simplicity
and efficiency than the alternatives.

We now discuss work related to the compiler. A good
starting point when porting GCC to a new architecture is
analyzing existing targets, since GCC has been ported to an
ample number of architectures, either brand new or old ones.
The main reference on porting GCC to a new target is [11].
Some guidelines can, however, be found elsewhere [12], [13].
Focusing on pure stack machines, the number of targets is
scarce. We can highlight two of them: the Thor [5] and
ZPU [14] processors.

The Thor processor is a 32-bit CPU developed for aerospa-
tial applications. It is a relatively old project (gcc 2.7, 1995),
where a GCC backend for this target was developed. The

154924 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

TABLE 2. Sizes of the artifacts of our approach to long-term preservation.

processor is a pure stack machine with no registers other
than the PC and SP, although the architecture is slightly
more complex than that of our abstract machine. This project
contributes some valuable ideas of how to handle the lack of
registers.

ZPU is another small zero-operand, 32-bit, simplistic
architecture. The GCC toolchain sources are available in [14]
(gcc 3.4.2, 2004). These sources include the compiler, the
assembler, the linker and other helper programs. Unlike Thor,
which makes the stackification of operands as soon as possi-
ble (in the expansion pass), the ZPU backend postpones it to
the final pass.

IX. FINAL REMARKS
The idea to use a machine for long-term preservation is
not new. However, our approach distinguishes itself from
previous attempts in two key ways: Our simple machine has
two alternative future descriptions assuming very different
reader backgrounds, and crucially, we have a C compiler
that targets the machine. Together this allows to preserve
complex formats such as PDF/A, and it significantly reduced
our engineering efforts since programming themachine could
partly be done using C. Table 2 indicates some of the effort
that went into writing the machine descriptions and the code
that make up our approach.10 All of our code is open-source
and available on GitHub11 together with the descriptions of
the machine.

A. PERFORMANCE
The cost efficiency of our approach to long-term preservation
depends onmultiple factors, some of which have been outside
the scope of this work, for example, the performance char-
acteristics of the storage medium and its representation/en-
coding of analog and binary information. Instead, we have
focused on:
1) The size in the analog (that is, human-readable) storage

medium of the abstract machine descriptions and the
initial program.

2) The size in the digital storage medium of the binaries for
archival and rendering.

3) The cost and ease of implementing the abstract machine
in the future.

4) The cost and ease of porting rendering software for
additional formats today.

Observe that all these costs can potentially be amortized
across many storage instances.

10We also did a lot of work in Coq, see Appendix B.
11https://github.com/immortalvm; some parts coming by the end of

December 2021.

Regarding item 1: This part takes up 0.07% of the film,
computed as follows: The how-to guide and mathemati-
cal specification together take up 29 pages, cf. Table 2.
We assume that one page of a document takes up a whole
frame on film. The initial program is 230 KiB. This will use
14 frames on film when hex-encoded using a font size of
12× 20.
Regarding item 2: This part is 13,8 KiB,12 which takes

up 8 frames or 0.12% of the film if we use the film storage
medium of SectionVII-C (where one film has 65 000 frames).
Regarding the latter two items: These cannot be assessed

quantitatively, but we believe that our work demonstrates
that the cost today is reasonable; the cost of future imple-
mentations is hard to estimate, but our results—in particular
the experiment (Section VI-A)—indicate that it should be
feasible.
The PDF rendering performance was benchmarked using

the C implementation of the abstract machine (III-C2) in
a VirtualBox virtual machine running on an Intel Core
i7-8850H (2.60GHz). The three test documents were ren-
dered at a resolution of 300 ppi, with 16 levels of
anti-aliasing.

B. FUTURE WORK
Even though we have a working solution which is ready for
use today, there are some questions that should be investi-
gated further. Most importantly, our approach to long-term
preservation should be compared to the alternatives, ideally
by an independent research group. We would also like feed-
back from more developers implementing the machine in
order to see if the descriptions can be simplified further or
improved in other ways.

Another important question is how to avoid that the code
for our abstract machine becomes yet another troublesome
format. For instance, the people of the future should not
have to implement multiple abstract machines with subtle
differences. If our approach catches on, there will inevitably
be suggestions to change the machine in various ways,
whether for performance reasons or to add more features
such as interactivity. Thus, we should at least introduce
version numbers for the machine specifications. Ideally,
we should also find a way to make new versions backward
compatible.

12This number was computed by summing the size of different binaries.

VOLUME 9, 2021 154925

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

One reason why the machine might change is that not
all design choices have been obvious or deeply investigated.
We did not have a precise way tomeasure how the alternatives
would affect the cost and ease of implementing the machine
in the future. Moreover, even measuring the effect of these
choices today (on the size and speed of themachine code) was
difficult since this ultimately depends on possible compiler
optimizations. Having an intermediate assembly language
meant that we could experiment with the native instruction set
without constantly rewriting the compiler; but it also means
that any conclusions—for example, with regards to the effect
of having no signed instructions—must be taken with a grain
of salt.

Even if we keep the current machine fixed, there are many
potential improvements. More optimizations can be added to
the compiler, and one might reduce the size of the initial pro-
gram considerably by initially using a more primitive encod-
ing (that is, before the main program is loaded). Whereas
our abstract machine should be easy to implement correctly
even in the far future, other components of our system are
quite complex and thus likely contain errors. This risk can be
reduced by rendering any content to be stored using one of
our current machine implementations and comparing it to an
authoritative rendering. We hope to add this to our process
as an optional step in the future, even though it will be quite
slow for some media types. It would also be nice to prove
more formal properties, for example, that the assembler is
correct.

Finally, we believe our approach has a potential beyond the
preservation ofmedia files. There is already away for the user
to pass options and other data to the machine. Thus, it can be
used to render contents from other sources than the current
storage instance. It should also be possible to compile the
compiler itself so that our approach can be used to preserve
software artifacts as well.

APPENDIX A
INSTRUCTION SET ARCHITECTURE SPECIFICATION
A. PROGRAMMING MODEL
The IVM is a pure stack-based machine: it has a program
counter and a stack pointer, but no general-purpose registers.
The programming model consists of the following elements:

• Memory: An array of 8-bit locations,M [A..A+ N − 1],
where 0 ≤ A < 264 and 0 < N ≤ 264.

• Program Counter : A 64-bit register, PC , that points to
the next instruction to be fetched or to any immediate
operands of an instruction. The initial value of PC is A.

• Stack Pointer : A 64-bit register, SP, that points to the top
of the stack, which is the memory region from M [SP]
to M [M + N − 1], inclusive. The initial value of SP is
(M + N) mod 264.

• Terminate Flag: A 1-bit flag, T , that is set to 1 when the
machine has terminated. The initial value of T is 0.

These elements are shown graphically in the following
figure.

B. BASIC DEFINITIONS
Definition 1 (Floor): bxc is the unique integer such that
bxc ≤ x < (bxc + 1).
Definition 2 (Integer division):

x div y =
⌊
x
y

⌋
Definition 3 (Modulo):

xmod y = x−y
⌊
x
y

⌋
, y > 0

Definition 4 (Bit value): For any integer value, x, the nota-
tion x.bit[i] refers to the value of bit i in x.
Definition 5 (Octet value): For any integer value, x, the

notation x.octet[i] refers to the integer made up of the bit
sequence from x.bit[8i+ 7] to x.bit[8i], inclusive.

C. BASIC FUNCTIONS
The following functions are needed by some instructions. For
each function, its arguments and its result are all 64-bit integer
values, except where otherwise noted.
Definition 6 (Conditional):

if(e, c, a) =

{
c if e is true
a otherwise

Definition 7 (Addition):

add(x, y) = (x + y) mod 264

Definition 8 (Multiplication):

mul(x, y) = (xy) mod 264

Definition 9 (Integer division):

div(x, y) =

{
q | x = qy+ r ∧ 0 ≤ r < y if x > 0 ∧ y > 0
0 otherwise

Definition 10 (Integer remainder):

div(x, y) =

{
r | x = qy+ r ∧ 0 ≤ r < y if x > 0 ∧ y > 0
0 otherwise

154926 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

Definition 11 (Binary power):

pow2(x) =

{
2x if x < 64
0 otherwise

Definition 12 (Bitwise boolean ‘‘and’’):

and(x, y) = z | ∀i ∈ {0, . . . , 63}

| z.bit[i] =

{
1 if x.bit[i] = 1 ∧ y.bit[i] = 1
0 otherwise

Definition 13 (Bitwise boolean ‘‘or’’):

or(x, y) = z | ∀i ∈ {0, . . . , 63}

| z.bit[i] =

{
1 if x.bit[i] = 1 ∨ y.bit[i] = 1
0 otherwise

Definition 14 (Bitwise boolean ‘‘not’’):

not(x) = z | ∀i ∈ {0, . . . , 63}

| z.bit[i] =

{
1 if x.bit[i] = 0
0 otherwise

Definition 15 (Bitwise boolean ‘‘exclusive or’’):

xor(x, y) = z | ∀i ∈ {0, . . . , 63}

| z.bit[i] =

{
1 if x.bit[i] 6= y.bit[i]
0 otherwise

D. MEMORY ACCESS PROCEDURES
Five basic procedures for memory access are used as building
blocks for the instructions.

1) PSEUDOCODE ELEMENTS
We introduce the following pseudocode elements to describe
the procedures in this section.

• x := v
Assign x the value v.

• var x := v
Declare variable x, assigning it the value of v.

• for i in m . . . n do S(i)
Evaluate S(i) n− m times, with i successively bound to
every integer in the range {m, . . . , n− 1}.

• return v
Return the value of v.

2) GENERAL MEMORY ACCESS OPERATIONS
There are two basic procedures for general memory access
that instructions can use to store integers to or load integers
from a given memory address. The memory is 8 bits wide,
and integers can be 8, 16, 32, or 64 bits wide, so they are
stored from the given memory address in little-endian format.
An 8-bit integer is trivially mapped to the specified memory
address.

The procedure store(n, a, x) stores an integer, x,
as n octets starting at memory address a. It is defined in
pseudocode as follows:

store(n, a, x) ≡ for i in 0 . . . n do M [a+i] := x.octet[i]

(1)

The procedure load(n, a) returns an integer loaded from
n octets starting at memory address a. It is defined in pseu-
docode as follows:

load(n, a) ≡ var x := 0

for i in 0 . . . n do x.octet[i] := M [a+ i]

return x (2)

3) STACK OPERATIONS
The stack operations are defined in terms of the general
memory access operations, using the stack pointer as the
memory address. All stack operations work on 8 octets at
a time, so arguments and results are assumed to be 64-bit
integers. For this reason the stack operations also decrement
and increment the stack pointer in multiples of 8.

The procedure push(x) pushes an integer, x, on the stack.
It is defined in pseudocode as follows:

push(x) ≡ SP := (SP− 8)mod 264

store(8, SP, x) (3)

The procedure pop() returns an integer popped off the
stack. It is defined in pseudocode as follows:

pop() ≡ var x := load(8, SP)

SP := (SP+ 8)mod 264

return x (4)

4) FETCH OPERATION
The procedure fetch(n) fetches n octets relative to the pro-
gram counter, incrementing it by the same number. It is used
both to fetch instructions and to fetch immediate operands.

fetch(n) ≡ var x := load(n, PC)

PC := (PC + n) mod 264

return x (5)

E. DEVICE ACCESS PROCEDURES
This section describes the procedures for device access. Since
the devices interface the machine with the real world, the
semantics can be described only informally.

1) IMAGE INPUT
The Image Input device allows the machine to consume an
image as a two-dimensional array of points of light intensity
values. The following figure shows an example of such an
array, consisting of 32 sampling points arranged in 8 columns
and 4 rows.

VOLUME 9, 2021 154927

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

As shown, both columns and rows are numbered consecu-
tively, starting at 0. The spacing between the sampling points
must be uniform in both horizontal and vertical directions,
and an anti-aliasing filter must be employed to limit the band-
width of the image to satisfy the Nyquist-Shannon sampling
theorem.

Each picture element detects the intensity of light transmit-
ted or reflected at a sampling point in that particular position
of the image, represented as one of 256 intensity levels,
from 0 (minimum intensity) to 255 (maximum intensity).
Values between 0 and 255 represent intermediate intensities
between these extremes.
Definition 16 (Read frame): The readframe() operation

reads a new frame and returns the number of columns, c, and
the number of rows r .

(c, r) = readframe()

Definition 17 (Read pixel): The readpixel() operation
returns the intensity, z, of the point at column x and row y.

z = readpixel(x, y)

2) IMAGE OUTPUT
The Image Output device allows the machine to produce an
image represented as a two-dimensional array of points of
color space values. Moving images can be produced as a
sequence of images.
Definition 18 (New frame): The newframe() operation

finishes and renders the frame constructed so far, and it sets
the width of the next frame to w, the height to h, and the
sample rate to r .

newframe(w, h, r)

Definition 19 (Set pixel): The setpixel() operation sets the
red value to r , the green value to g, and the blue value to b for
the pixel at column x and row y.

setpixel(x, y, r, g, b)

3) AUDIO OUTPUT
The Audio Output device allows the machine to produce
a two-channel audio signal encoded digitally using Linear
Pulse Code Modulation. The device must create an audio
signal passing through a series of magnitude values specified
by the program. The bandwidth of this audio signal must be
less than half of the sampling frequency. Each channel value
is in the range {0, . . . , 216 − 1}.

Definition 20 (Add sample): The addsample() operation
sets the audio signal magnitude of the left channel to l and
the one of the right channel to r .

addsample(l, r)

4) TEXT OUTPUT
The Text Output device allows the machine to produce a
stream of text.
Definition 21 (Put character): The putchar() operation

produces the character with Unicode code point c.

putchar(c)

5) OCTET OUTPUT
The Text Output device allows the machine to produce a
stream of 8-bit numbers.
Definition 22 (Put byte): The putbyte() operation produces

the octet x.

putbyte(x)

F. INSTRUCTION SEMANTICS
Table 3 summarizes the instruction semantics. The instruction
cycle proceeds as follows:
1) Execute c := fetch(1), and locate the table entry whose

‘‘Hex’’ column value is c.
2) Execute x := fetch(n) for every variable, (n)x, in the

‘‘Immediate’’ column of the entry.
3) Execute v := pop() for every variable v listed in the

‘‘Pop’’ column of the entry.
4) Execute all operations listed in the ‘‘Explicit effects’’

column of the entry.
5) Execute push(e) for every expression e listed in the

‘‘Push’’ column of the entry.
This cycle is repeated until T = 1.

APPENDIX B
MORE ON THE ASSEMBLY LANGUAGE
As mentioned in Section III-D1, the language of the assem-
bler is richer than the instruction set of the abstract machine,
see Table 4. The assembler comes with a set of integration
tests, each consisting of a small assembly program and the
expected final stack. Adding more such tests would increase
the trust in the assembler, but we do not yet have a com-
plete specification of the assembly language to guide this
work.

Somewhat related, we also wanted to prove formally how
more complex ‘‘pseudo-instructions’’ can safely be imple-
mented using the native instructions of our abstract machine.
While conceptually clear, the mathematical description dis-
cussed in Section II-C is not well suited for such proofs. Thus,
a second mathematical description of the abstract machine
was produced from scratch, which assumes that the reader
has a background in theoretical computer science and an

154928 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

TABLE 3. Instruction semantics.

understanding of Coq, but the specifications of each instruc-
tion are still recognizable:

Equations oneStep’ (op: Z) :M unit :=
. . .

oneStep’ JZ FWD :=
let* o := next 1 in
let* x := pop64 in
(if (decide (x = 0 :> Z))
then
let* pc := get’ PC in
put’ PC (offset o pc)

else
ret tt);

. . .

We have only proven some basic properties of the machine
so far. The fact that the machine has no separation between
the program, stack and other memory has been a challenge.
However, we have identified a number of useful concepts
and strategies to deal with this, some inspired by separation
logic [15], and the work is still ongoing.

APPENDIX C
COMPILER SUPPLEMENTARY ASPECTS
This annex complements some aspects of the compiler design
discussed in the main text.

A. INSTRUCTION EXPANSION
Let us illustrate the expansion of an RTL rule with an exam-
ple. Consider this canonical rule for the arithmetic division
with 3 operands: operand0← operand1/operand2.
Its expansion involves three steps: pushing the first operand,
dividing by the second one and popping the result. This trans-
lates into three operations on TR: push (TR ← operand1),
arithmetic operation (TR ← TR / operand2), and pop
(operand0 ← TR). The corresponding RTL pattern would
be like this one in the machine description:
(define_expand "udivdi3"
[(set (match_operand:DI 0 "" "")

(udiv:DI (match_operand:DI 1 "" "")
(match_operand:DI 2 "" "")))]

""
{

ivm_expand_push(operands[1], mode);
rtx udiv_rtx = gen_rtx_UDIV(mode, TR_REG_RTX(mode),

operands[2]);
emit_insn(gen_rtx_SET(TR_REG_RTX(mode), udiv_rtx));
ivm_expand_pop(operands[0], mode);
DONE;

})

Here functions ivm_expand_push pushes an operand
and ivm_expand_pop pops the result. Once the result is
popped, the content of the TR register is undefined. For this
reason, the ivm_expand_pop function needs to clobber it.

This is the how the three-address based GIMPLE forms are
translated into several one-operand instructions, with the help
of the instrumental TR register. For this example, the RTL

VOLUME 9, 2021 154929

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

TABLE 4. Assembly language grammar.

expressions emitted by the expansion for a transfer such as
AR ← X1/X2, with three general purpose registers, would
be:

(set (reg:DI TR_REGNUM)
(unspec_volatile:DI

[(reg:DI TR_REGNUM)
(reg:DI X1_REGNUM)] UNSPEC_PUSH_TR))

(set (reg:DI TR_REGNUM)
(udiv:DI (reg:DI TR_REGNUM)

(reg:DI X2_REGNUM)))
(set (reg:DI AR_REGNUM)

(unspec_volatile:DI
[(reg:DI TR_REGNUM)] UNSPEC_POP_TR))

(clobber (reg: DI TR_REGNUM))

Finally, after all the compilation passes, the resulting RTL
expressions must be printed as assembly instructions. Rules
to output the assembly also need to be defined in the machine
description file. For example, next RTL pattern describes how
to write the assembly for action TR ← TR / operand2:

(define_insn "udivdi1"
[(set (match_operand:DI 0

"tr_register_operand" "=r,r")
(udiv:DI (match_operand:DI 1

"tr_register_operand" "r,r")
(match_operand:DI 2

"arithmetic_operand" "i,rm"
)))]

""
"@
div_u! %2
load8! %2\;div_u"

)

Here it is defined which assembly instructions will be
written when finding an RTL expression that matches this
rule. The string tr_register_operand is a predicate,
a function that is only true for the TR register. Quoted letters
represents constraints associated to addressing modes ("i"
for immediate, "r" for register and "m" for memory). Pred-
icates and target-specific constraints are also defined as part
of the machine description.

B. ABI
The ABI (Application Binary Interface) is a key piece for the
integration of program modules written in C (and compiled

with the C compiler) and hand-written assembly code. A sum-
mary of the designed ABI is included in this section.

a: DATA LAYOUT
Integer data can be of four sizes: 1, 2, 4, or 8 bytes long. For
signed integers, the corresponding types are char, short,
int and long. There are the corresponding unsigned types
of the same size. For real numbers, the type float is
4 bytes long while the type double is 8 bytes long. Two
additional 128-bit data types are supported by the compiler,
that are mapped into 2 consecutive locations: long128 and
complex double. In the case of structures, it should be
noted that a padding may be added between structure mem-
bers, or at the end of the aggregate type, but never at the
beginning, before the first member.

b: CALLING CONVENTION
A unique ABI is used for all functions regardless the
number of arguments (no arguments, a fixed number of
arguments or a variable number of arguments). The call-
ing convention is based on the caller-pops-arguments rule,
so that the caller is in charge of moving the return value
to its destination and releasing the arguments. In short,
this is the sequence of actions followed when invoking a
function:
1) The caller may allocate one or two stack slots for storing

the return value. Currently, the compiler uses the register
AR to place 64-bit return values (or smaller), and when
returning a 128-bit value, the pair (X1,AR) is used, being
AR the less significant 64-bit word.

2) The caller passes all arguments on the stack
3) The caller invokes the function (call instruction).
4) After the function returns, the return value has been

placed by the callee in the stack position immediately
above the return address. At this point, the caller copies
the return value (for example, to AR) and releases argu-
ments, if necessary.

An example of the assembly code generated for a C code
calling a function is shown in Fig. 6.

154930 VOLUME 9, 2021

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

FIGURE 6. Example of a function call (C code on the left; generated IVM assembly on the right).

C. LIBRARIES
The GCC compiler needs to be accompanied by the standard
C libraries in order to produce fully functional code. Two key
libraries have been ported to the architecture of the abstract
machine:
• The libgcc library, which includes a collection of rou-
tines for floating point emulation (libgcc.a). It is
necessary as the abstract machine supports only native
integer arithmetic (floating-point arithmetic is software
emulated).

• The newlib library [16], [17], which provides the C
standard library: crt0.o (the C runtime startup file),
libc.a (the standard C library), and libm.a (the
mathematical C library).

The C run-time startup file is linked by default as the first
object of the executable program, unless a specific entry point
is defined (-e command-line flag). Notice that the design
of crt0 is very dependent on how the implementation of
the abstract machine builds and initializes the binary code.
The crt0 provided with newlib is responsible for: (1) pro-
viding a default start point through the global label start,
(2) initializing a global variable pointing to the beginning
of the heap, (3) initializing main arguments argc and
argv, (4) calling the function main(int argc, char*
argv[]), and (5) on exit, leaving the main() return value
on the stack.

Two classes of libraries, static (.a) and dynamic (.so)
are supported by the compiler toolchain. The terms static
and dynamic refer to the format of the library rather than
how they are loaded. The whole compilation process is static,
that is, all used functions are included in the final binary,

as no dynamic loader exists. The ld script separates different
objects included in a library in order to process them together
with the other objects coming from C sources. The ld script
is able to reduce the size of the output by selecting only those
objects in libraries that are actually used by the C sources
being linked.

D. OPTIMIZATIONS
The assembly code generated by the compiler benefits from
three kinds of optimizations: (1) the optimization passes pro-
vided byGCC, (2) specific peepholes for the abstract machine
target, and (3) some lower-level optimizations at assembly
level. By default, the compiler has been configured to use the
-O2 optimization level, which offers a good balance between
speed (executed instructions) and size. The peephole trans-
formations are a key element in optimization. Peepholes are
applied as another GCC optimization pass, but they are target
dependent. For the abstract machine, a wide set of peephole
transformations has been defined. Finally, a set of assembly
level optimizations has been considered in the output phase.

E. VALIDATION
In addition to the specific applications related with this
project, such as the boxing library and the supported format
renderers (PDF, JPEG, TIFF,. . .), the compiler has been tested
with several C compiler testsuites including:
• the GCC testsuite for C, distributed along with GCC.
It can be launched after building the compiler withmake
check-gcc-c. This is a very large collection of basic
tests (+85000 tests performed), including the so-called
torture tests, specially designed to stress the compiler,

VOLUME 9, 2021 154931

I. Rummelhoff et al.: Abstract Machine Approach to Preserving Digital Information

• the TCC test suite [18], which contains nearly one hun-
dred programs testing basic features of the C language,

• a collection of benchmarks from the LLVM test-
suite [19]: Olden, Prtdist, VersaBench, Fhourstones,
lemon, llubenchmark, mafft, nbench, oggenc, spiff,
viterbi, SMG2000, McGill, Shootout, Stanford, and
CoyoteBench.

One of the challenges when testing real programs has been
the lack of file systems for the abstract machine. An approach
to tackle this limitation, is including the files in memory
data structures in the C source, in such a way the access to
files is emulated by accessing such structures. This approach
involves modifying the source code. For cases like the code
from the LLVM testsuite, an in-memory folderless file system
generator [20] was developed. It generates a C file with
the contents of the filesystem together the basic low-level
file primitives (open, close, read, write, ...).
In this way, this generated file can be linked with the rest
of source files, which can access the files without requiring
modifications. These features rely on the linker’s ability to
supersede the libc file primitives by those provided together
with the filesystem.

ACKNOWLEDGMENT
Joschua Thomas Simon-Liedtke participated in the exper-
iment (see Section VI-A) and wrote a partial machine
implementation. This resulted in feedback on the guide in
Section II-A and led to its improvement.

REFERENCES
[1] The Coq Development Team. The Coq Proof Assistant 8.12. Zenodo.

Accessed: Jul. 2020. [Online]. Available: https://coq.inria.fr/
[2] M. Sozeau and C. Mangin, ‘‘Equations reloaded: High-level dependently-

typed functional programming and proving in Coq,’’ Proc. ACM Program.
Lang., vol. 3, pp. 1–29, Jul. 2019.

[3] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien, ‘‘Bringing the web up to speed with
web assembly,’’ in Proc. 38th Conf. Program. Lang. Design Implement.
(ACM SIGPLAN), A. Cohen and M. T. Vechev, Eds., Barcelona, Spain,
Jun. 2017, pp. 185–200.

[4] Stephan Tolksdorf. FParsec (1.1.0). Accessed: Jan. 5, 2020. [Online].
Available: https://www.quanttec.com/fparsec/

[5] H. Gunnarsson and T. Lundqvist, ‘‘Porting the GNU C compiler to the
Thor microprocessor,’’ M.S. thesis, Göteborg, Sweden, 1995. [Online].
Available: http://tlundqvist.org/Publications/

[6] R. Lorie, ‘‘Long term preservation of digital information,’’ in Proc. JCDL,
2001, pp. 346–352.

[7] L. T. Nguyen and A. Kay, ‘‘The cuneiform tablets of 2015,’’ in Proc.
ACM Int. Symp. New Ideas, New Paradigms, Reflections Program.
Softw. (Onward), G. C. Murphy Ed., Pittsburgh, PA, USA, Oct. 2015,
pp. 297–307.

[8] V. Joguin, ‘‘Passive digital preservation now & later: Microfilm,
micr’olonys and dna,’’ in Proc. 16th Int. Conf. Digit. Preservation,
B. Sierman and A. Puggioni, Eds., 2019, pp. 1–6.

[9] R. Appuswamy and V. Joguin, ‘‘Universal layout emulation for long-term
database archival,’’ in Proc. 11st Conf. Innov. Data Syst. Res. (CIDR),
Jan. 2021, pp. 1–6.

[10] J. Braun, J. Buchmann, D. Demirel, M. Fujiwara, M. Geihs, S. Moriai,
M. Sasaki, and A. Waseda, ‘‘LINCOS—A storage system providing long-
term integrity, authenticity, and confidentiality (full paper),’’ IACR Cryp-
tol. ePrint Arch., Tech. Rep. 2016/742, 2016, p. 742. [Online]. Available:
https://eprint.iacr.org/2016/742

[11] R. M. Stallman, The GCC Developer Community, document GNU Com-
piler Collection Internals (for GCC Version 10.2.0), 2020. [Online]. Avail-
able: https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gccint.pdf

[12] K.Walfridsson. (Dec. 1, 2020).Writing a GCC Back End. Accessed: 2017.
[Online]. Available: https://kristerw.blogspot.com/2017/08/writing-gcc-
backend 4.html

[13] (Dec. 1, 2020). Writing GCC Machine Descriptions.
Accessed: 2010. [Online]. Available: http://www.cse.iitb.ac.in/grc/
intdocs/gcc-writing-md.html

[14] (Dec. 1, 2020). ZPU—The Worlds Smallest 32 Bit CPU With GCC
Toolchain. Accessed: 2009. [Online]. Available: https://opencores.
org/projects/zpu

[15] P. O’Hearn, ‘‘Separation logic,’’ Commun. ACM, vol. 62, pp. 86–95,
Jan. 2019.

[16] C. Vinschen and J. Johnston. (Mar. 1, 2021). The Red Hat NewLib
C Library. Accessed: 2021. [Online]. Available: https://sourceware.
org/newlib/

[17] J. Bennett. (Mar. 1, 2021). Howto Porting NewLib: A Simple Guide.
Accessed: 2010. [Online]. Available: https://www.embecosm.com/
appnotes/ean9/ean9-howto-newlib-1.0.html

[18] F. Bellard. (Mar. 1, 2021). Tiny C Compiler. [Online]. Available:
http://bellard.org/tcc

[19] LLVM Testsuite. Accessed: Nov. 2021. [Online]. Available:
https://github.com/llvm/llvm-test-suite

[20] E. Gutierrez, S. Romero, and O. Plata. (2020). IVM Filesystem Generator.
[Online]. Available: https://github.com/immortalvm/ivm-fs

IVAR RUMMELHOFF received the dr.scient. degree in mathematical logic.
He has a background in the software industry. He is currently a Senior
Research Scientist with the Norwegian Computing Center working in the
area of digital transformation.

ELADIO GUTIÉRREZ received the M.Sc. and Ph.D. degrees in telecom-
munication engineering from the University of Malaga, Spain, in 1995 and
2001, respectively. Since 2003, he has been an Associate Professor with the
Department of Computer Architecture, University of Malaga.

THOR KRISTOFFERSEN received the dr.scient. degree in computer science
from the University of Oslo, in 1998. Since then, he has been working
with the Norwegian Computing Center. He is currently a Senior Research
Scientist with the Norwegian Computing Center.

OLE LIABØ received the bachelor’s degree in computer science from the
Trondheim College of Engineering, in 1996. He is currently the Innovation
Manager with Piql AS.

BJARTE M. ØSTVOLD received the dr.ing. degree from the Norwegian
University of Science and Technology, Trondheim, Norway, in 1999. Since
1999, he has been working with the Norwegian Computing Center, Oslo,
Norway.

OSCAR PLATA received the Ph.D. degree in physics from the University
of Santiago de Compostela, Spain, in 1989. He worked as an Assistant
Professor with the University of Santiago de Compostela, where he became
an Associate Professor, in 1990. He moved to the University of Malaga,
in 1995, where he became a Full Professor with the Department of Com-
puter Architecture, in 2002. His research interests include high performance
computing and parallel architectures. He was an Associate Editor of IEEE
TRANSACTIONS OF COMPUTERS, from 2015 to 2019.

SERGIO ROMERO received the M.Sc. and Ph.D. degrees in computer
science from theUniversity ofMalaga, Spain, in 1996 and 2000, respectively.
Since 2003, he has been an Associate Professor with the Department of
Computer Architecture, University of Malaga.

154932 VOLUME 9, 2021

