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1 Introduction

Global mean temperature, while not a sensitive indicator of climatic change (Hegerl et al.,
2006), is a commonly used diagnostic of said change. In order to estimate this quantity
from data, mainly land-based temperature measurements, ship-based sea surface tem-
peratures, bouys, and floats, different groups use different approaches, and to some ex-
tent different raw data. There are one private and four governmental groups that provide
estimates of global monthly or annual mean temperatures. The series are subject to un-
certainty, and different groups have different approaches to assess this as well. For a
statistician, it seems reasonable to try to combine the series into a single estimate. This
ought to reduce the uncertainty in the estimate. Our approach is to assume that each
of the series measure (with series-dependent errors) the same quantity, the actual global
mean temperature, and try to use the data and their uncertainties to estimate this quan-
tity and determine the uncertainty of that estimate. We have chosen recent updates of
all five global annual mean temperature series that come with estimates of uncertainty.
Recent updates to the methods in several of these series make it timely to publish this
analysis. While we will try to explain how the uncertainties have been calculated, we
will not attempt to make any judgment as to which approach is better.

In Section 2 we first describe the current global mean temperature series and some of
the statistical issues surrounding them, and in Section 3 we explain our methodology. In
Section 4 we provide the results, summarizing our posterior estimate of the combined
posterior global temperature anomalies, as well as characteristics of the trend and time
series dependence of this anomaly process. We explore the sensitivity of our results to
the omission of each of the five global anomaly series that we include in our analysis,
and investigate the probability that 2020 was the warmest year on record. We close with
a discussion in Section 5.

2 Current methods

The Global Historical Climatology Network (GHCN) is a collection of land based weather
stations, maintained by the National Oceanic and Atmospheric Administration (NOAA)
in the United States. The largest set of stations is the monthly set, which in its current
version 4 has about 26 000 stations with some records going back to the 18th century
(Menne et al., 2018). The data sets have been homogenized to take account of instrument
changes and station moves. Recently, many additional stations have been added using
the International Surface Temperature Initiative (ISTI; Rennie et al. (2014)). In particular,
this has improved the coverage of high northern latitudes.

The International Comprehensive Ocean-Atmosphere Data Set (ICOADS), also main-
tained by NOAA, contains records of marine surface data, some going back to the 18th
century (Freeman et al., 2017). The older data are nearly all based on commercial or mili-
tary ship logs. The data set has roughly half a billion observations. Bias-corrected analy-
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ses are included in ERSSTv5 (Huang et al., 2017) and HadSST.4 (Kennedy et al., 2019).

The UK Hadley Center and University of East Anglia Climate Research Unit (HadCRU)
estimate global mean land temperature by first dividing each hemisphere into 5 degree by
5 degree grids, within each of which all selected GHCN monitoring stations are averaged
(Morice et al., 2020). Stations with suspiciously large deviations from its neighbours are
eliminated. The sea surface temperature is similarly calculated using ICOADS data. The
global mean temperature is then calculated by averaging water and land grid squares
with weights corresponding to the proportion of the grid square that is land and ocean,
respectively, as well as the area of the grid square compared to the area of Earth. Grid
squares without observations (particularly in the Arctic) were previously ignored, but
are now estimated using Gaussian spatial estimation.

The US National Aeronautical and Space Administration Goddard Institute of Space
Studies (GISS) use a finer grid with 8 000 equal area grid cells, and compute the grid
cell averages by distance weighted averaging (Hansen et al., 2010; Lenssen et al., 2019).
The land data are from GHCNv4, and the ocean data are from ERSSTv4. GISS also uses
some satellite data to correct for urbanicity.

The Japanese Meteorological Agency (JMA) uses GHCN data through 2000, and WMO
CLIMAT reports from 2001 on. They use their own sea surface analysis COBE-SST (Ishii
et al., 2005), which is partly based on ICOADS data. The calculation of global mean tem-
perature is similar to previous ones of the Hadley Center (leaving out areas of no obser-
vations).

NOAA calculates an empirical Karhunen-Loeve expansion based on the observed spatial
covariance during a reference period, and estimates the average temperature in 5 degree
by 5 degree grid squares without observations from weighted averages of station values
based on the expected spatial correlation between the station and the grid square center
(Huang et al., 2019; Vose et al., 2012; Zhang et al., 2019). The land data are from GHCNv4,
and the ocean data are from ERSSTv5.

A final global temperature series is produced by the Berkeley Earth group. They use a
1 degree by 1 degree grid for land data (Rohde and Hausfather, 2020), and use tools
of spatial statistics to estimate the temperature in land areas without observations In
addition they do not homogenize data. Rather, when a station is moved or is known to
have changed instrumentation, it is considered a new station, independent of the old
one. Their land data has about 1.6 million observations at over 40 000 stations, and are
obtained by combining 16 data sources. The ocean data uses an interpolated version of
the Hadley Center product HadSST3.

The different series all use monthly data (many stations overlap between the data sets)
which are standardized by subtracting monthly averages for a baseline interval of 20–30
years, resulting in anomalies. Different groups calculate the anomalies differently. Rohde
et al. (2013) contains more detailed descriptions of the calculation of some of the series.

For our analysis, we subset each data product to the years 1880–2020, and generate tem-
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Figure 1. (a) Time series plots of the global temperature anomalies for the five data products; (b)
Plots of the standard errors, by year.

perature anomalies by subtracting the mean for the entire period for each series. How-
ever, for the JMA series, there were no data available for the years 1880–1890 and 2019–
2020, and our subtraction of the mean took account of this shortened time period.

Figure 1(a) shows a time series plot of these global anomalies. There are strong positive
pairwise correlations in range of 0.967–0.996, driven by the trend. While there are many
commonalities among the series (e.g., all the series are warmer in 1940–1950 and from
1980 onwards), there are also year-by-year differences. For example, the series tend to
disagree on the values of the global temperature anomaly before 1900, and the JMA series
tends to be cooler in the later years.

2.1 Statistical difficulties
In order to do proper spatial estimation of the global temperature field, it is necessary
to model the spatial covariance function. Since the covariance function has to be defined
on a sphere, it is necessary to use a theoretical one (possibly with estimated parameters)
rather than an empirical one (see Gneiting (2013), for a discussion).

The creation of anomalies from data (or from global reconstructions) for a given refer-
ence point has two purposes: it reduces the spatial correlation, and it serves to remove a
seasonal effect. For a statistician this would be estimated using the entire data set, while
for climatologists this is done using a reference period. As a consequence, the temporal
structure of the anomalies during the reference period is less pronounced than for other
periods. In addition, if the reference period contains an unusual seasonal pattern, the rest
of the anomalies will contain residual seasonal variation. In some applications this could
influence the results.

When approximating the Earth by a sphere, the concept of stationarity (translation in-
variance) translates to isotropy (rotation invariance). Most of the above analyses use
isotropic structures. It does not appear likely that most climate processes are isotropic.
A proper nonstationary estimation of global mean temperature, but for computational
reasons based on a small subset of the data available, can be found in the PhD disserta-
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tion of Barnali Das at the University of Washington (Das, 2000).

2.2 Estimates of uncertainty
The five series (Berkeley Earth, Hadley, NOAA, GISS, and JMA) calculate uncertainties
of each global estimate. Berkeley Earth computes standard geostatistical estimate of un-
certainty. The Hadley analysis computes standard deviations of the analysis (spatial esti-
mation) error, which includes measurement error, sampling error and SST bias correction
error, and coverage error over parts of the globe considered too far from observations
to perform spatial estimation (those areas where the ratio of posterior to prior variance
is higher than 25%). The NOAA series has standard errors corresponding to coverage
error and SST bias correction error. The GISS uncertainty corresponds to land station ho-
mogenization errors, ocean temperature bias correction error, spatial interpolation and
coverage error, as well as parametric uncertainty. Finally, JMA uses a similar approach to
Hadley to assess uncertainty (although no uncertainty is reported after 2016 – in our anal-
ysis we assume the uncertainty for 2017 and 2018 is the same as the uncertainty reported
for 2016).

Figure 1(b) shows time series plot of these standard errors. We notice that the NOAA
series uncertainty generally is higher than the other series’ uncertainties. Around World
War 2 the Hadley series expresses high uncertainty, presumably due to higher observa-
tion bias in ocean data collected mainly from naval ship records.

3 Methods summary

In this section we present a hierarchical statistical model that we employ to produce a
combined estimate of the global temperature anomaly using the different global data
products. We also discuss the different models that we fit to the different data sources
available to us.

3.1 A model to reconstruct global temperature anomalies
In our model we assume a common time scale indexed by t = 1, . . . , N , but allow the
data products to be missing at certain time indexes. This also allows us to understand the
effect of removing certain data products from the model, but also accounts for the JMA
series that has missing data relative to the other data products.

Suppose that we have J data products, and let j = 1, . . . , J index the data products. For
data product j, let {Dt,j : t = 1, . . . , N} denote the global mean temperature anomaly
series and let {vj,t : t = 1, . . . , N} denote the time-varying measure of variability that
accompanies each global mean anomaly series. To allows for the possibility of missing
values, we set oDj,t = 1 if we observe an anomaly at time index t for data product j and
oDj,t = 0 otherwise.

Now let {Yt : t = 1, . . . , N} denote the latent global temperature anomaly that we wish
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to infer upon. We assume that

Yt = µt + νt, t = 1, . . . , N.

Here the trend component {µt} is modeled by a linear combination of b basis functions
{xT (t)}:

µt = xT (t) β, t = 1, . . . , N.

The serial dependence about the trend, {νt}, is modeled using a stationary Gaussian au-
toregressive process of order p (AR(p)). To ensure that the AR process {νt} is station-
ary, we parameterize the model using the partial autocorrelation function (PACF), which
uniquely defines the process. Since the PACF is zero at lags h > p for an AR(p) process,
let ψ denote the p-vector of the first p lags of the PACF. Also, since the PACF at each lag
h = 1, . . . , p is constrained to lie between −1 and 1, we choose to transform the PACF to
the real line using the link function g(x) = log((1 + x)/(1 − x)). Applying the link func-
tion elementwise, we define η = g(ψ) to be the transformed PACF vector. Given η or ψ,
and an innovation variance σ2 > 0, we can calculate the covariance of the AR(p) process
using the Levinson-Durbin recursions (e.g. Brockwell and Davis, 2002).

When we observe an observation for data product j = 1, . . . , J and time index t (i.e.,
when oDt,j = 1), then

Dj,t = Yt + δj,t + εj,t, t = 1, . . . , T. (1)

This model (1) assumes that the global temperature anomaly for each data product is
equal to the latent global temperature, plus a discrepancy term {δj,t} that captures the
variability between the data products, as well as a term that captures the natural vari-
ability of each data product {εj,t}. Using the measure of variability, {vj,t : t = 1, . . . , N},
that comes with each data product j, we assume that {εj,t : t = 1, . . . , N} is an inde-
pendent Gaussian process with mean zero and variance var(εj,t) = vj,t. We assume that
{δj,t : t = 1, . . . , T} is a set of independent N(0, τ2) random variables for each j, and
assume independence of these discrepancy terms over the data products.

3.2 Fitting the Bayesian model
Using a Bayesian approach, we will assume prior distributions for the hyperparameters
τ2, βT , ηT , σ2, that appear in our model. We first assume mutual independence between
each parameter. Then for the variance τ2 of the data product discrepancies we assume an
inverse gamma distribution with shape parameter 0.01 and rate 0.01. For the trend coef-
ficients β, we assume a b-variate normal distribution with mean 0b and covariance 10Ib.
For the AR(p) process {νt}, we assume that the transformed PACF parameters η follow
a p-variate normal distribution with mean 0p and covariance 0.5Ip and the innovation
variance σ2 follows an inverse gamma distribution with shape parameter 0.01 and rate
0.01.

Including the latent global temperature process observed at all time indexes,Y = (Y1, . . . , YN )
T ,

our complete vector of parameters in our hierarchical model is

θ = (Y , τ2,βT ,ηT , σ2)T .

A combined estimate of global temperature 8
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Figure 2. (a) Time series plots of the posterior mean global temperature anomalies (black lines),
along with simultaneous 95% credible intervals (gray regions). (b) A plot of the posterior standard
deviation of the global temperature anomalies by year.

Then the posterior distribution of the parameters given the data products is

π(θ|{Dj}) ∝

 J∏
j=1

f(Dj |Y , τ2)

π(Y |β,η, σ2) π(τ2) π(β) π(η) π(σ2).
This posterior distribution is not available in closed form, and so we used a Markov chain
Monte Carlo (MCMC) algorithm to sample from the parameters given the data products
and climate model runs. Details of the MCMC algorithm and how we sample the model
discrepancy terms are given in Appendix A.

In every model we use b = 5 b-spline basis functions to capture long term trends on a
scale of approximately 25 years in the latent climate anomaly. We also varied the order
p of the AR(p) model. There was little appreciable differences between the results with
p = 2 and p = 4, and so we will only discuss the AR(4) model results. (Also, see Craigmile
and Guttorp (2019) for a time series analysis of the Berkeley Earth series that suggested
that an AR(4) model for the errors was the best fit.)

4 Results

We fit the hierarchical statistical model to the five global anomaly series along with their
estimates of uncertainty, using MCMC with Gibbs Sampling. We ran the chain for 500
000 iterations after burn-in and thinned the chains by keeping every 10th sample. We
checked convergence of the chains using trace plots, running multiple chains from differ-
ent starting values.

4.1 Posterior global temperature anomalies
Figure 2(a) shows a plot of the posterior mean global temperature anomalies by year cal-
culated using our hierarchical model fit to the five global anomaly series along with their
estimates of uncertainty (black lines). The gray regions show simultaneous 95% cred-
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Figure 3. (a) Time series plots of the posterior mean trend (black lines), along with simultane-
ous 95% credible intervals (gray regions); (b) Posterior mean spectral density function (SDF) by
frequency, of the AR(4) time series component {νt} (black lines), along with simultaneous 95%
credible intervals (gray regions).

ible intervals for the temperature anomalies. We use the simconf.mc function from the
excursionsR packages to calculate these simultaneous intervals (see Bolin and Lindgren,
2015, 2017, 2018, for further details). Figure 2(b) displays the posterior standard deviation
of the global temperature anomalies by year. The global temperature anomalies exhibits
more uncertainty in earlier years and, over longer time scales, the uncertainty then tends
to decrease. However, there are time periods that have more uncertainty than other pe-
riods, such as around and between the two World Wars, and in the last two years. We
will learn later that the greater uncertainty at the beginning and in the last two years is
partially due to the fact there is no data for the JMA series for these time periods. The
uncertainty around the two wars is a feature of most data products, and is due to vastly
reduced commercial shipping. The posterior mean latent global temperature anomaly
shows a strong systematic and nonlinear trend, and seems to exhibit significant depen-
dence over time.

To further explore the time series structure of the global temperature anomaly, Figure 3(a)
shows posterior summaries of the trend component {µt} and the spectral density func-
tion (SDF) of the time series component {ηt} in Figure 3(b). In each panel the black line
denotes the posterior mean calculated for each year, and the gray regions are simultane-
ous 95% credible intervals again calculated using the excursions R package.

As explained above, we use b = 5 b-spline basis functions to capture long term trends
on a scale of approximately 25 years in the latent climate anomaly. Over this time scale,
Figure 3(a) shows that the temperature anomaly tends to decrease from 1880 to 1900, and
then increases from 1900 to 2020, but the rate of increase is not the same over this period.
There is a steady increase from 1900 to the mid 1950s, a slower increase until the 1980s,
and then the rate of increase is highest from 1980 to 2020. Since 1980, we estimate that the
global temperature anomaly has increased on average by 0.020 degrees Celsius per year.

To understand the variation of the global anomaly over shorter time scales we look at
the SDF. The SDF is the Fourier transform of the autocovariance of the time series, and
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allow us to decompose the variation of the time series component in terms of the variance
contributions of sinusoids over different frequencies. Figure 3(b) demonstrates that there
is strong time series dependence over longer time scales, as expressed by the peak at zero
frequency (which is confounded with the trend), and there is also a broadband spectral
peak between frequencies 0.1 and 0.2. This indicates strong time series dependence in
the global temperature anomaly on a scale of 8–10 years. (If there was no time series
dependence the SDF would be constant over frequency.) We can see such quasi-periodic
dependence over this time scale in Figure 2(a).

4.2 Exploring the discrepancy series
For each data product series j = 1, . . . , J included in our model, we include a discrepancy
term {δj,t} that captures the variability inherent in each data product that is not accounted
for by the natural variability of each data product. Looking at posterior summaries of
these terms allows us to learn about the variations over time that are not captured by the
latent global temperature anomaly or the natural variability.

Figure 4 shows the posterior mean (black lines) and pointwise 95% credible interval for
each discrepancy term {δj,t} as we vary the data product j. While there are patterns over
time, we first note that most discrepancies are small relative to the scale of the global tem-
perature series as shown in Figure 2(a) (The 95% credible intervals for the discrepancies
lies between -0.15 and 0.15 degrees Celsius). Regardless, we see differences in the mean
and variability of the discrepancies over time for the different data products.

The discrepancy term for the JMA series indicates that, after accounting for the natu-
ral variability, this data product varies systematically from the consensus estimate (the
global temperature anomaly) in the earlier and later time periods. As explained above,
the Japanese Meteorological Office changed from using GHCN to using monthly values
provided by the WMO (the coverage of GHCN is larger than the WMO data). Another
difference is that the ocean temperatures are from the JMO COBE-SST data set.

The NOAA discrepancy term is more variable than the other series over the entire time
period, which may indicate that the standard error reported for NOAA is either too large,
or that all the standard errors reported for the other series are too small.

The Berkeley and HadCRUT5 discrepancies have some similarities over time which in-
dicate that those two data products agree to some extent (the sample correlation between
the posterior means is 0.620), but still vary from the latent global temperature anomaly.
Similarly, the NOAA and GISS discrepancies, while varying in their uncertainty over
time are also strongly correlated over time, with a sample correlation of 0.758 between
the two posterior means. However, the discrepancy terms for Berkeley, HadCRUT5 and
GISS have lower variability in recent years which also indicate less deviation relative to
the latent global anomaly, after accounting for the reported error in the series.

Finally, we observed that every series has some discrepancy around World War 2, which
hints to variabilities in accounting for a lack of data coverage in this time period.
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Figure 4. Posterior mean discrepancies {δj,t} for each data product j (black lines), along with
pointwise 95% credible intervals (gray regions).

4.3 Sensitivity to observation series
Given that we are combining data products to obtain one estimate, along with a mea-
sure of uncertainty, it is also of interest to understand the influence of each data product
upon the results. Complementary to the previous section, to explore this, we remove each
data product from the model, and refit our hierarchical model. Figure 5 shows a plot of
the posterior means (panel (a)) and posterior standard deviations (SDs) (panel (b)) by
year. The different colors in each plot indicate the values when a single data product
is removed as compared to the “Original” (black lines) when we do not remove a data
product when fitting the model.

Figure 5 shows that some data products are influential over certain periods of year. We
can see that from 1880 to around 1910, that removing GISS or JMA does change the pos-
terior mean global anomaly over this time period. We also notice differences in the poste-
rior mean global temperature anomaly when we remove these two data products in the
period 1920–1970. Except when we remove the JMA series, in later years there is more
agreement between the posterior mean global temperature anomalies when we remove
a series and when we do not remove any series. This indicates good concordance in our
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Figure 5. (a) Time series plots of the posterior mean global temperature anomalies when the hi-
erarchical model is fit after removing each series one at a time (colored lines), as compared to the
posterior mean global temperature anomalies fit using all the data (black lines). (b) Corresponding
plot of the posterior SDs, by year.

estimate of the mean behavior of the latent global temperature anomaly in the last forty
years. However as expected, Figure 5(b) indicates that the estimates of uncertainty vary
greatly when we remove a data product from our model. Removing GISS or Berkeley
greatly inflates the posterior SD for the global temperature anomaly, relative to not re-
moving those series or removing HadCRUT5, NOAA, or JMA. Regardless, we learn that
indeed the uncertainty is still larger at the start and end of the series and around the two
World Wars. The flattening of the uncertainty in later years when JMA is removed indi-
cates that JMA behaves very differently from the other series, which confirms our earlier
findings.

4.4 Ranking
A feature of some interest with the public is the ranking of a given year in the temperature
record, answering questions such as “Was 2020 the warmest year on record?” or “Which
is the warmest decade on record?” Using the methodology of Guttorp and Kim (2013) we
answer a slightly more general question, namely “What is the probability that 2020 was
the warmest year on record?” Because of differences in the uncertainty assessments for
the different series, we compute the probability that 2020 is the warmest year on record
for most of the series used in this paper. This probability is the relative frequency of each
rank among a large number of simulated temperature records from a normal distribution
with the mean and variance given by the respective series and its standard error. Each
calculation of the probability was based on 100 000 simulations. The study in Guttorp
and Kim (2013) indicates that the dependence structure in the series hardly affects the
ranks, so we simulate paths using independent normals.

Table 1 shows the estimated probabilities that 2020 is the warmest year for four global
anomaly series, as well the posterior global temperature anomalies calculated via our hi-
erarchical model using the AR(2) and AR(4) error assumption, respectively. (We cannot
calculate the probability that 2020 is the warmest year for the JMA, because we do not
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Table 1. For four global anomaly series and the posterior global temperature anomalies calculated
via our hierarchical model using the AR(2) and AR(4) error assumption, an estimation of the
probability that 2020 was the warmest year based on 100 000 simulations using the mean and
variance for each anomaly series, along with the earliest year among the simulations that was the
warmest year.

P̂ (2020 warmest) Earliest warmest year
Berkeley 0.23 2016
HadCRUT5 0.32 2016
NOAA 0.30 2005
GISS 0.58 2016
JMA — 2014
Posterior, AR(2) errors 0.39 2016
Posterior, AR(4) errors 0.41 2016

observe data for 2019 or 2020 for that series.) Based on 100 000 simulations, the estimated
standard error for each estimated probability is less than 0.0016, smaller than the accu-
racy presented in Table 1. There is some variation by series in the estimated probability
that 2020 is the warmest year. The probability is smallest for Berkeley (0.23), and then is
similar for HadCRUT5 and NOAA (0.32 and 0.30 respectively). For GISS the probability
is much larger (0.58). This is not surprising as examining Figure 1 shows that GISS has the
highest average anomalies and lowest uncertainty in 2020 among all the data products.
Our estimate of the probability from our model varies little: 0.39 for the AR(2) model, and
0.41 for the AR(4) model. As expected, adjusting for all the data products we estimate a
probability in the middle of all the individual probabilities.

In the second column of the table we calculated the earliest year that was warmest across
the simulations for each series. Except for the NOAA and JMA series, the earliest warmest
year among the simulations was 2016 – this includes our posterior estimates of the global
anomaly for both AR(2) and AR(4) time series model components. For the JMA the earli-
est warmest year was 2014 (remember there is no data for 2019 or 2020). For NOAA the
earliest year among all the simulations that was warmest year was 2005: re-examining
the standard errors by year (see e.g., Figure 1) we see there is a heightened uncertainty
since 2004 that is not present in the other anomaly series which could account for this
change.

These results indicate strong evidence of warming in recent years.

5 Discussion

Since satellite measurements of global surface temperature only have been available since
1978, and do not come with estimated uncertainties, we have not included them in our
analysis. However, Figure 6 shows, in blue, the University of Alabama Huntsville satel-
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Figure 6. Posterior simultaneous 95% credibility interval for global mean annual temperature.
Overlaid are the UAH satellite observations (blue) and ERA series (pink). All values are anomal-
ized with respect to the years 1979–2018.

lite global annual means (Spencer et al., 2017) overlaid on a simultaneous 95% credibility
interval again calculated using the excursions R package. It is important to note that,
while the instrumental record is a combination mainly of 2 m temperature on land, and
water temperature just under the water surface (the Berkeley team distinguishes between
temperature above and below the ice surface; the difference is less than .05 ◦C globally),
the satellite data measure the thermal microwave emission from atmospheric oxygen in
the 50-60 GHz oxygen absorption complex, which is translated to a brightness tempera-
ture and then (linearly) related to the atmospheric temperature. The satellite series used
corresponds to temperature in the lower troposphere, not exactly surface temperature.
The satellite data tend to be colder than the instrumental data in more recent years.

It is also of interest to compare our results to the European reanalysis series ERA5, pro-
duced by the European Center for Medium-Range Forecasts (Hersbach et al., 2020). A
reanalysis is a recomputation of a current weather forecast model using historical data,
and is often thought of as the ground truth for climate modellers. This is shown by the
pink lines in Figure 6. As can be seen, the reanalysis closely matches the posterior draws
from our model, although there is a tendency in the 1980s and 1990s for the ERA to yield
slightly colder global temperature anomalies in this period.

Another source of information about global temperature is the various deterministic par-
tial differential equation models that describe the Earth system. There is a recent experi-
ment (CMIP6, Eyring et al. (2016)) that includes runs that use historical climate forcings
to estimate historical climate. In future work we will assess whether this informs our
estimated global temperature.

Acknowledgments We are grateful to David Bolin, Finn Lindgren, John Kennedy, Colin
Morice, Thordis Thorarinsdottir, Charlotte Wickham, and officials at the Tokyo Climate
Center for helpful discussions. Data were obtained from the Copernicus Data Center,
Berkeley Earth, the Goddard Institute for Space Sciences, the UK Met Office Hadley Cen-

A combined estimate of global temperature 15



ter, NOAA’s National Centers for Environmental Information, and the Tokyo Climate
Center.

References

Bolin, D. and Lindgren, F. (2015). Excursion and contour uncertainty regions for latent Gaussian
models. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 77:85–106. 10

Bolin, D. and Lindgren, F. (2017). Quantifying the uncertainty of contour maps. Journal of Com-
putational and Graphical Statistics, 26:513–524. 10

Bolin, D. and Lindgren, F. (2018). Calculating probabilistic excursion sets and related quantities
using excursions. Journal of Statistical Software, 86:1–20. 10

Brockwell, P. J. and Davis, R. A. (2002). Introduction to Time Series and Forecasting (Second Edition).
Springer-Verlag, New York, NY. 8

Craigmile, P. F. and Guttorp, P. (2019). Modeling and assessing climatic trends. In Gelfand, A.,
Fuentes, M., Hoeting, J., and Smith, R., editors, Handbook of Environmental and Ecological Statistics.
Chapman and Hall/CRC, New York: NY. 9

Das, B. (2000). Global covariance modeling: a deformation approach to anisotropy. PhD thesis, Univer-
sity of Washington. 7

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016).
Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design
and organization. Geosci. Model Dev., 9:1937–1958. 15

Freeman, E., Woodruff, S., Worley, S., Lubker, S., Kent, E., Angel, W., Berry, D., Brohan, P., East-
man, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J., Rayner, N., Rosenhagen, G., and Smith,
S. (2017). ICOADS Release 3.0: A major update to the historical marine climate record. Int. J.
Climatol. (CLIMAR-IV Special Issue), 37:2211–2237. 4

Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli,
19:1327–1349. 6

Guttorp, P. and Kim, T. Y. (2013). Uncertainty in ranking the hottest years of US surface temper-
atures. Journal of climate, 26:6323–6328. 13

Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global surface temperature change. Rev.
Geophys., 48. 5

Hegerl, G. C., Karl, T. R., Allen, M., Bindoff, N. L., Gillett, N., Karoly, D., Zhang, Z., and Zwiers,
F. (2006). Climate change detection and attribution: Beyond mean temperature signals. J. Clim.,
19:5058–5077. 4

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-ĂŘSabater, J., Nicolas, J.,
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A The full conditional distributions used in the Markov
chain Monte Carlo algorithm

We now present the steps required to carry out the MCMC algorithm. First we write the
model in matrix-vector form. We have that each global temperature data product series
of length N ,Dj , (j = 1, . . . , J) satisfies

Dj = Y + δj + εj .

where δj ∼ N(0, τ2I) and εj ∼ N(0,V j), assuming independence between these com-
ponents. Then, the latent average global temperature series is

Y = µ+ ν,

where the mean is µ = Xβ and ν is a realization of an AR(p) process with PACF coef-
ficient p-vector ψ and innovation variance σ2. (Here X is an N × b matrix with tth row
given by x(t).) Let Σ = cov(ν) be the covariance matrix for ν, which we parameterize in
terms of η and σ2. Then our hierarchical model can be expressed as

Dj |Y , τ2 ∼ N(Y , τ2I + V j), j = 1, . . . , J ;

Y |β,η, σ2 ∼ N(Xβ,Σ).

We now present the full conditional distributions and the MCMC updates for each pa-
rameter in the model.

Updating Y : We have

π(Y |{Dj},θ \ {Y }) ∝

 J∏
j=1

f(Dj |Y , τ2)

π(Y |µ,Σ).

Thus, we sample Y from N(P−1q,P−1) where

P =

J∑
j=1

B∗j + Σ−1;

q =
J∑
j=1

B∗jD
∗
j + Σ−1µ, (A.1)

whereB∗j is an N ×N matrix with (t, t′) element

B∗j,t,t′ =

{
Bj,t,t′ , oj,t = 1 and oj,t′ = 1;

0, otherwise,

withBj =
[
τ2I + V j

]−1, andD∗j is an N -vector with elements (t = 1, . . . , N )

D∗j,t =

{
Dj,t, oj,t = 1;

0, otherwise.
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Updating τ2 : We have

π(Y |{Dj},θ \ {τ2}) ∝

 J∏
j=1

f(Dj |Y , τ2)

π(τ2).
A Metropolis-Hastings symmetric random walk update is used on the parameter log τ2.
Suppose we are at log τ2 and we propose an update from log τ2new ∼ N(log τ2, κ2) for
some constant positive variance κ2. Including the Jacobian of the log transformation for
τ2, the new value is accepted with probability min(exp(α), 1) where

α =
J∑
j=1

log f(Dj |Y , τ2new) + log π(τ2new) + log τ2new −

J∑
j=1

log f(Dj |Y , τ2)− log π(τ2)− log τ2.

In calculating α we only calculate f(Dj |Y , τ2new) and f(Dj |Y , τ2) for each j = 1, . . . , J

at the subset of time points for which data is available (i.e., for those values of t such that
oj,t = 1).

Updating β: We have

π(Y |{Dj},θ \ {β}) ∝ π(Y |µ,Σ)π(β),

and hence we sample β from N(P−1q,P−1) where

P = XTΣ−1X + V −1β ; and q = XTΣ−1Y + V −1β mβ.

Updating η and σ2: We have

π(Y |{Dj},θ \ {η, σ2}) ∝ π(Y |µ,Σ)π(η)π(σ2).

A Metropolis-Hastings symmetric random walk update is used on the parameters η and
log σ2. Suppose that we are currently at η and log σ2. We then propose

ηnew ∼ Np(η,K) and log σ2new = N(log σ2, κ2),

for some positive definite matrix K and positive variance κ2. These new values are ac-
cepted with probability min(exp(α), 1) where

α = log π(Y |µ,Σnew) + log π(ηnew) + log π(σ2new) + log σ2new −

log π(Y |µ,Σ)− log π(η)− log π(σ2)g1− log σ2,

where Σnew is the covariance matrix for Y calculated with ηnew and log σ2new and Σ is the
covariance matrix for Y calculated with η and log σ2.
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Sampling the data discrepancies: In our model, δj is the discrepancy for data prod-
uct series j = 1, . . . , J . We evaluate the posterior distribution of discrepancies using our
posterior draws of the parameters θ: for each j we have

δj |Dj ,θ ∼ N(P−1q,P−1),

where P = I/τ2 + V −1j and q = (Dj − Y )/τ2.
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