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ABSTRACT

The deep learning revolution in computer vision has enabled
a potential for creating new value chains for Earth observa-
tion that significantly enhances the analysis of satellite data
for tasks like land cover mapping, change analysis, and ob-
ject detection. We demonstrate a deep learning based value
chain for the task of mapping vegetation height in the Liwale
region in Tanzania using Sentinel-1 and -2 data. As ground
truth data we use lidar measurements, which are processed
to provide the average vegetation height per Sentinel-2 pixel
grid (10 m). We apply the UNet, which is a widely used neu-
ral network for segmentation tasks in computer vision, to es-
timate average vegetation height from the Sentinel data. Pre-
liminary results show that we are able to map the forest extent
with high accuracy, with an RMSE of 3.5 m for Sentinel-2
data and 4.6 m for the Sentinel-1 data.

Index Terms— vegetation height, convolutional neural
network, Sentinel-1/2

1. INTRODUCTION

Vegetation height may be used to characterize the structure of
a forest. It is known to correlate with important biophysical
parameters like primary productivity, above-ground biomass,
and bio-diversity [1, 2]. In-situ observations are in practice
only feasible for a limited number of sample plots and logging
sites. Airborne light detection and ranging (lidar) can provide
canopy height over ground maps densely and accurately, but
the cost and the limited area covered makes it infeasible for
large-scale monitoring.

Trier et al. [1] estimated vegetation height from Land-
sat data covering the Liwale area in Tanzania. A regression
model between the average vegetation height computed from
the lidar data and the specific leaf area vegetation index com-
puted from the Landsat data, was established. By using all
available Landsat acquisitions of the same area within 1 year,
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and producing a yearly estimate of vegetation height, the esti-
mation error variance was reduced. The variance was further
reduced by Kalman filtering the sequence of yearly estimates.

Lang et al. [2] also estimated the vegetation height, but
from Sentinel-2 data. Their study areas were Gabon and
Switzerland, and their apporach was to train a deep convolu-
tional neural network (CNN) to regress per-pixel vegetation
height. Their results showed good qualitative agreement with
existing vegetation height maps, and the authors demon-
strated that vegetation height maps with 10 m pixel-spacing
can be derived at country scale from Sentinel-2 imagery. As
stated by Lang et al. [2], single-pixel based prediction of
vegetation height at 10m pixel spacing is not suitable due to
physical phenomena like shadowing, roughness, and species
distribution that extends across neighboring pixels. Deep
CNN architectures like UNet are perfectly tailored to account
for the spatial context of the problem.

In this study, we explore and compare Sentinel-1 and -
2 data to estimate the height of dry tropical vegetation. We
consider the same area in as Trier et al. [1], but establishes
a regression model using a deep CNN to estimate the vegeta-
tion height from the Sentinel data. The network is based on
the UNet [3] architecture, working in regression mode, and
implemented in the deep learning framework for large-scale
processing of Sentinel data proposed by Salberg and Walde-
land [4].

2. STUDY AREA AND DATA

2.1. Study area

The study area was Liwale in Tanzania (S9◦ 54’, E37◦ 38’).
It covers 15,867 km2 of Miombo woodlands with altitudes
in the range 150–900 m above sea level. The rainfall pattern
in Liwale is bi-modal with a dry season from June to Octo-
ber. A short rainy period usually starts in late November and
lasts until January. Normally, there is a dry spell in February
followed by a longer wet season that lasts from March until
May.



2.2. Lidar data

The lidar data were collected along 1.4 km wide and parallel
strips in a systematic design at 5 km intervals, i.e. there was a
gap of 3.6 km between neighbouring strips. A 113 km (east-
west) × 156 km (north-south) area was covered with 34 strips
in the east-west direction.

From the lidar data set, average vegetation height was
computed on the 10 m Sentinel-2 grid. Each lidar pulse had
been labelled with class (“ground” or “other”) and return
number. From all “ground” returns, a digital terrain model
(DTM) was created at 1 m pixel spacing. From all the first
returns, a digital surface model (DSM) was created at the
same pixel spacing. By subtracting the DTM from the DSM,
a normalized DSM (nDSM) was obtained, which may be
used as an estimate of vegetation height. By aggregating this
to the 10 m pixel-spacing Sentinel-2 grid, the resulting av-
erage vegetation height and fractional forest cover maps are
regarded as exact for the purpose of developing a method to
estimate forest features from satellite images with 10 m pixel
spacing.

2.3. Sentinel-1 and -2 data

In this study training data are selected from the tiles Sentinel-
2 tiles T37LCK and T37LDK, validation data from tile
T37LDJ and test data from tile T37LCJ. They all overlapped
with the lidar data. In total 72 tiles for the period 2016 – 2018
and months April to June were used.

Sentinel-1 data (dual-polarized, ascending direction) cov-
ering the Sentinel-2 tiles for the period October 2016 to
September 2017 (in total 26 acquisitions) were used for the
SAR part. The Sentinel-1 data was processed splitted accord-
ing to the Sentinel-2 training, validation and test tiles.

3. PRE-PROCESSING

3.1. Sentinel-2

Bands 1, 2, 4, 5, 8, 8A, 9, 10, 11, 12 were selected and used
for cloud detection. Clouds are detected using the “Sentinel
Hub’s cloud detector for Sentinel-2 imagery”. This cloud de-
tection method is based on a Light Gradient Boosting Ma-
chine (LightGBM) [5], which is a gradient boosting frame-
work that uses tree based learning algorithms. Areas in the
label images corresponding to clouded pixels were masked
with an ignore value in order to prevent that cloud pixels were
used to train the network.

For the forest estimation, we applied the Sentinel-2 bands
with 10m (bands 2, 3, 4 and 8) and 20m (bands 5, 6, 7, 8A,
11 and 12) resolution. For each tile, the selected bands were
calibrated to top-of-the-atmosphere reflectance using the at-
tached metadata.

3.2. Sentinel-1

Normalized radar backscatter for each Sentinel-1 scene is pro-
cessed to the CEOS conform Radiometrically Terrain Cor-
rected product at 20m, taking into account both geometric as
well as radiometric distortions along terrain slopes. In ad-
dition, the interferometric coherence was calculated for both
polarizations between each consecutive pair of acquisition (12
- 24 days), with the earlier date defined as master and the
following data as slave image. For the processing steps that
depend on a terrain model, auxiliary SRTM 30m Digital Ele-
vation Model (DEM) had been used [6].

Subsequently, each of the resulting products was then
individually stacked in time, and a multi-temporal speckle
filter had been applied on each stack in order to reduce noise.
Multi-temporal statistics were calculated on the resultant
time-series stack resulting in temporal composite layers.

For the backscatter in VV and VH polarisation, the min-
imum and standard deviation were calculated for each pixel
over time. The use of the minimum value should assure that
the contrast between temporally constant woody vegetation
and other, more dynamic natural land cover types such as
grasslands and agricultural fields is enhanced. In addition,
SAR backscatter is increased by soil moisture, which de-
creases the capability to differentiate between different tree
cover classes. The minimum value therefore assures that
for each pixel the driest conditions are used. Similarly, the
standard deviation of the backscatter is inversely related to
tree cover. Closed forests with full tree cover exhibit a stable
backscatter over time that results in a low standard deviation.
The more the canopy opens, effects of soil moisture, and thus
seasonality, affects the signal and the standard deviation over
time increases.

For the coherence layers in VV and VH polarisation the
maximum, standard deviation and average value over time
were calculated. The coherence itself contributes information
by separating urban from forest environments, which both ex-
hibit higher backscatter values that often are not distinguish-
able. While large and rigid scattering objects (e.g. rocks,
buildings) on the ground feature a high coherence, small un-
stable objects (e.g. leaves) lead to a decrease in coherence.
Therefore, the interferometric coherence is inversely related
to tree cover, because closed forests exhibit very low values
of coherence. Since this behavior can be assumed temporally
stable for forested areas, using the maximum coherence value
over the observed time period should enhance the contrast
between different tree cover classes similar to the minimum
value of the backscatter, while simultaneously excluding tem-
poral dynamic land cover classes as well as urban environ-
ments. The rationale for the use of the standard deviation
again is to provide the machine learning algorithm with a fea-
ture that distinguishes temporal stability of coherence that is
assumed for closed forests with more fluctuation of the sig-
nal for open forests. The average is considered useful since



it drastically reduces noise, which is more prominent in the
coherence layers then in the backscatter.

4. DEEP LEARNING FRAMEWORK

The underlying deep learning framework we apply is a pixel-
to-pixel mapping network [4], where the network learns a
pixel-wise mapping from Sentinel data to a given vegetation
height. In this paper we have apply the UNet, which a con-
volutional neural network that was developed for biomedical
image segmentation [3]. The network is based on the fully
convolutional network [7] and its architecture was modified
and extended to work with fewer training images and to yield
more precise segmentation.

The network consists of a contracting path and an expan-
sive path, which gives it the u-shaped architecture. The con-
tracting path is a typical convolutional network that consists
of repeated application of convolutions, each followed by a
ReLU and a max pooling operation. During the contraction,
the spatial information is reduced while feature information is
increased. The expansive pathway combines the feature and
spatial information through a sequence of up-convolutions
and concatenations with high-resolution features from the
contracting path.

The deep learning framework is implemented in PyTorch.

4.1. Loss function

Since the UNet performs a regression task, we apply the
mean-squared error as loss function.

4.2. Sampling strategy

A problem we often encounter in real-life machine learning
problems is imbalanced data. This often leads to biases in
the trained machine learning algorithm if it is not accounted
for. In the case of vegetation mapping, there is an overweight
of samples with low vegetation height. This means that the
CNNs are biased towards predicting low vegetation heights
because this lead to the lowest loss value in the training. To
account for this, we artificially changed the imbalance of the
data when computing the loss by ignoring samples such that
the height distribution is close to uniform.

4.3. Hyperparameters

The U-Net is learned from 256 × 256 image crops that are
randomly sampled from the set of Sentinel training images.
The training runs for 15000 iterations with a mini batch size
of 16. We used a learning rate decay strategy, where we start
with an initial learning rate of 0.0004 and decayed it with a
factor of three every 3000 iteration. The model is tested on
the validation set every 250th iteration, and the model giving
the best validation loss is kept.

5. RESULTS

When predicting tree heights, the predictions are highly corre-
lated with the ground truth data computed from the lidar mea-
surements (Figs. 1 and 2). However, for both the Sentinel-1
and -2 data we tend to underestimate tree heights above 15
m (Fig. 1 and 2). For Sentinel-1 we tend to overestimate the
tree height for values around 5 m (Fig. 2). The RMSE for the
Sentinel-1 and -2 data were, 3.5 m and 4.6 m, respectively.

Fig. 1. Predicted tree height versus true tree height for
Sentinel-2 data. The mean absolute error is 3.5 m.

Fig. 2. Predicted tree height versus true tree height for
Sentinel-1 data. The RMSE is 4.6 m.

When we evaluate the predicted vegetation height of a
test patch, we observed that both the Sentinel-1 and -2 based



Fig. 3. Test patch results: Left: Sentinel-2 RGB image. Middle/left: Ground truth lidar measurements. Middle/right: Sentinel-2
based predictions. Right: Sentinel-1 based predictions. Yellow areas corresponds to low vegetation, whereas dark green areas
correspond to tall vegetation.

predictions are able to capture the structure of the vegetation
(Fig. 3). However, there are some differences between the
predictions. In particular, for Sentinel-2 we are able to predict
zero vegetation height for clearly bare ground areas (Fig. 3).
In that respect, the Sentinel-2 predictions appears to be more
close to the lidar mearsurements.

Trier et al. [1] also studied the task of estimating the av-
erage vegetation height in the Liwale area. However, their
results are not directly comparable with ours since their pre-
dictions was related to the 30m Landsat pixels. Their test area
were also different.

6. CONCLUSIONS

This work has demonstrated that both Sentinel-1 and -2 data
may be used to predict the average vegetation height of dry
tropical vegetation. For the Sentinel-2 data, we trained a deep
CNN using TOA band values from Sentinel-2 images from
different dates. For Sentinel-1, we processed the Sentinel-1
timescans into features. By doing this we reduce the amount
of data, by simultaneously keeping the temporal dynamics,
reduce the noise and standardize the input layers, which are
desirable for machine learning analysis.

In this study the predictions based on Sentinel-2 data tend
to be slightly better than the Sentinel-1 based predictions.
However, we don’t have the data to support a firm conclusion
on this.

Future work will focus on extending the methodology
to a multi-sensor approach, exploit other Sentinel-1 multi-
temporal features, and other networks and loss functions.
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