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Abstract  Using the time-dependent dynamics of gene expression from immune
cells in blood, we aimed to explore single gene expression trajectories as biomark-
ers for death after a diagnosis of breast cancer introducing a new statistical method
denoted Difference in Time Development Statistics (DTDS). This shows as proof of
principle that the gene expression profiles from immune cells in blood differed in the
postdiagnostic period are dependent on later vital status.
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The gene expression analyses of 394 breast cancer cases and age-matched controls
were obtained from the Norwegian Women and Cancer (NOWAC) postgenome
biobank (N = 50 000) performed in blood taken 0–8 years after a breast cancer
diagnosis. The tube contained a protective buffer that preserved the mRNA in the
blood. Cancer diagnosis and cause of death were based on linkage with the Nor-
wegian Cancer Registry. The new statistical method was designed to test the dif-
ference in the time development between two strata using a non-parametric rep-
resentation of the time development of the gene expression and used the area
between the curves, i.e. the integral between the cures, as test statistics.

The time-dependent curves or trajectories exerted clearly non-linear changes
with rapid transient mostly increasing fold changes, in cases who later died. Survi-
vors had no changes. For cases who died this transient increase was followed by a
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regression towards the gene expression profiles of survivors. For 86 genes, the inte-
grated area from 18 months to 8 years post diagnosis was highly significant
(p<0.00001) among women who died. There were indications of stronger relation-
ship in metastatic cases alone.

INTRODUCTION
In 2017, the number of cancer deaths in Norway exceeded that of cardiovascular
deaths for the first time (Norwegian Institute of Public Health, Norway, 2018).
While the number of cancer deaths has remained fairly stable over recent years, the
number of cardiovascular deaths has decreased rapidly. This points to the urgent
need for further improvements in cancer treatment for an ageing population. For
women in Norway, breast cancer is the most common invasive cancer, constituting
23% of all cancers diagnosed among women in 2017 (Cancer Registry of Norway,
2018). Although significantly improved, the majority of breast cancer deaths are
due to metastasis, not the tumor. One hundred years ago the survival for women
with metastatic cancer was only 5% after five years, while today the ten-year sur-
vival rate of metastatic breast cancer is 85% (Reddy et al., 2018). In order to further
improve cancer diagnosis, personalized treatment is moving forward (Jeibouei et
al., 2019). Individualized treatment should be based on predictors for individual
outcome. The potential of immune response has become evident through the
recent use of immune therapy (Stroncek et al., 2017). Biomarkers in blood or liquid
biopsies could be functional genomics i.e. transcriptomics or methylation, or
metabolites or proteins.

We proposed the compilation of time trajectories of gene expression in blood
from many independent case-control pairs as a potential liquid biopsy in order to
study the impact of the immune system on carcinogenesis (Lund et al., 2016). A
gene’s trajectory corresponds to a curve that represents the changes in gene expres-
sion as a function of time, consisting of differences of gene expression between
many case-control pairs. Healthy controls establish the level of expression for
genes not involved in carcinogenesis, and is assumed to be constant over time.
Genes related to the immune system and/or carcinogenesis (expressed in cases)
may change over time. Lack of a priori knowledge of the shape of the trajectories
demands an agnostic approach (Spitz & Bondy, 2010) including adjustment for
multiple testing (Reiner, Yekutieli, & Benjamini, 2003). Gene expression is ana-
lyzed as a potential biomarker of carcinogenesis/metastasis, and the statistical
quantity of interest is the distribution of the gene expression as a function of time
after diagnosis.
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In a recent study of gene expression profiles in the years after diagnosis stratified
on clinical stages significant differences in the overall gene expression profiles
were found (Lund submitted PLOS).

The aim of this study is to explore single gene expression trajectories from
immune cells in blood over the first years after diagnosis as predictors of later vital
status, dead or alive. In order to use the cumulated evidence over time for clinical
follow-up a new statistical method, denoted Difference in Time Development Sta-
tistics, was developed; see below.

METHODS
This new statistical method, denoted Difference in Time Development Statistics
(DTDS), is designed to test differences in time development in a non-parametric
manner of two variables or the same variable for two different strata. In this paper,
the method is used in order to identify genes where the gene expressions in blood
samples have a different time development after diagnosis of breast cancer. The
dataset consists of case-control pairs in which the case is diagnosed with the dis-
ease and the control is healthy. The data is the difference in log2 gene expression
in blood samples between the case and the control. The gene expression profiles
that are measured represent an aggregate of the transcriptional activity of all the
blood cells at the time of blood collection. The DTDS method will be used on the
postdiagnostic or clinical follow-up in the NOWAC postgenome cohort, where
each blood sample, regardless of disease status, was collected at a random follow-
up time. We will first describe the epidemiological design necessary for studies of
the postdiagnostic trajectories, and then describe the statistical concepts.

MATERIAL
The overall NOWAC postgenome biobank
Recruitment for the prospective Norwegian Women and Cancer (NOWAC) study
started in 1991 (Lund et al., 2008). Women were randomly sampled from the Nor-
wegian population register in Statistics Norway. The women were mailed a letter
of invitation and a questionnaire. Follow-up was based on linkage to the Cancer
Registry of Norway and the register of deaths were based on the unique national
birth number given to all Norwegian inhabitants. Repeat questionnaires were
mailed with intervals of some years. In the years 2002–2006, women were invited
to participate in a subcohort, the NOWAC Postgenome cohort study; for further
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details see Dumeaux et al., 2008. The main purpose was to establish a biobank
suitable for analyses of functional genomics, in particular transcriptomics. Ran-
dom samples of NOWAC women were drawn in weekly batches of 500 women
until 50 000 women had responded positively. Women were invited to fill in
another questionnaire and donate a blood sample at a health-care institution such
as a GP’s office. The blood samples were sent overnight to the institute by special
post for biological samples. The tube contained a protective buffer that preserved
the mRNA in the blood (PAX gene blood RNA system), allowing frozen storage
over time and optimizing sensitivity of the analysis.

The present analysis used a subsample of the NOWAC postgenome biobank par-
ticipants. Women who had both filled in a questionnaire in 1996–1998 and had
given a Postgenome blood sample were eligible, a total of 31 101 women. Since col-
lection of blood was at random without knowledge of disease status, the procedure
gave a uniform distribution of gene expression measurement over time.

In 2010, breast cancer cases diagnosed between 1996 and 2006 were identified
through a linkage to the national cancer registry. An age-matched control was
drawn at random from the same batch of 500 women. A total of 394 incident breast
cancer cases were identified. Those rendered non-eligible were six technical outli-
ers, seven cases with unknown metastases, seven cases with another incidence of
breast cancer before blood collection, ten controls diagnosed with cancer before
blood donation, and one who emigrated, leaving 363 case-control pairs for the
present analyses.

A linkage to the register of vital status in Norway gave a complete follow-up after
blood donation until the end of the study on 31.12.2014, or death or emigration.
Causes of death according to different strata of metastatic/invasive cancer at time
of diagnoses are given below.

In order to update changes in clinical stage or a second breast cancer and to
remove controls with an incidence of cancer, another linkage was performed in
2018 with the Cancer Registry of Norway. For six women with metastases and ten
cases with another incidence of breast cancer, the updated information was used
to change the start of follow-up.

Of the 363 case-control pairs, 85 were omitted since the follow-up time for the
cases that are observed before 18 months from diagnosis are heavily influenced by
the treatment. We therefore first analyze a dataset of 39 cases who died from can-
cers and compare them with 239 cases who did not die of cancer, i.e. a total dataset
of 278 case-controls. Later, we reduce this to a dataset consisting of 23 cases with
metastatic breast cancer who died of breast cancer and 79 cases with metastatic
breast cancer who did not die of cancer; see Table 9.1.
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Table 9.1. Further classification of the data and specification of the two analyzed
datasets with 278 and 102 case-control pairs

STATISTICAL METHODS
The dataset consists of two strata of women with breast cancer in which the cases
died or did not die of cancer and the observation time is the time after the last diag-
nosis. For each gene and stratum, we estimate the differences between cases and
controls in gene expression as a smooth function using a moving window in time.
We then estimate the differences in the time development between the two strata
by calculating the area between the two estimated curves for the smoothed gene
expression for the two strata. If there is a systematic difference in the level or the
time development of the gene expression between the two strata, this area is large.
We will test three hypotheses. The first hypothesis, H0A, concerns individual gene
trajectories, while H0B looks at all genes together. We also predict the vital stage,
dead or alive, of each case using cross-validation. H0C states that this prediction is
independent of vital stage.

H0A: Identify genes with different time development
We first focus on identifying genes with a different time development. Let Xc,g be
the difference in log2 gene expression for case-control pair c = 1,2, ... , M for gene
g = 1,2, ... Ng. Further, let tc be the time of observation relative to diagnosis for the
case in the case-control pair c. We assume Xc,g~N(fs(c),g(tc), σg) where σg is the
standard deviation and s(c) is the stratum of case c. We estimate the function fs,g(t)

Strata Died of 
breast 
cancer

Died from 
non-breast 

cancer

Sum died 
of cancer

Survived Died, not 
cancer

Sum, not 
died of 
cancer

Sum

Metastatic 32 4 36 97 3 100 136

Invasive 11 5 16 205 6 211 227

Sum 43 9 52 302 9 311 363

Dataset one where data before 18 months are excluded 

Metastatic 27 82 109

Invasive 12 157 169

Sum 39 239 278

Dataset two where data before 18 months are excluded

Metastatic 23 79 102
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by taking an average of the observations Xc,g from stratum s(c) in an interval that
includes the n nearest observations in time, i.e. the n/2 observations with largest tc
but tc < t and the n/2 observations with smallest tc but tc > t. The number n is a
tradeoff between precision and resolution. It should be large enough that the esti-
mate in an interval should not depend on a single data point and at least smaller
then M/4 in order to get resolution in time. If there is a large difference in the time
development between the two strata, the test statistic or area Vg = |fa,g –
fb,g| = ∫|fa,g(t) – fb,g(t)|dt describing the area between the curves, will be large

where the two strata are denoted a and b, respectively. This estimate is the sum of
the absolute value of the differences in average gene expression between the two
strata in equally spaced time points assuming the controls have similar values. The
integral is evaluated in a time interval where there are observations from both
strata.

We make Ng, independent hypotheses, i.e. one hypothesis for each gene:
H0A: For gene g, the time development of Xc,g is independent of the stratum s(c),

i.e. fa,g = fb,g.
For each gene g, we compare the observed Vg,o with the variable V from a simulated

distribution where we use a standardization of the same variables Xc,g for all the genes
simultaneously, but where we randomize the strata s(c) of the cases. We maintain the
observations for each gene and the number of observations from each stratum. From
the Nu simulations, we estimate the probability distribution g(v) = P(V > v) that is
independent of the genes. Based on this, we find a p-value pg = p(V > Vg,o) = (k + 1)/
(NuNg + 1) for each gene g if k of the NuNg simulations have V > Vg,o. We correct for
multiple testing using the (Benjamini & Hochberg, 1995).

We estimated the functions fs,g with a moving average, where the window size is
one-quarter of the respective datasets, i.e. 9 and 59 points, respectively. These
functions were evaluated in regularly spaced points, making it easy to evaluate the
functions when the observations for each stratum changes position in time. The
integral was evaluated in the largest interval such that there were data points from
the two strata before and after the interval making the interval equal to (547, 2255)
days after diagnosis. The method was applied on a dataset with Ng = 8400 genes.
The analysis is performed for standardized gene expressions for each gene

where the standard deviation σg is taken over the case-controls pairs for each gene.
This normalization is necessary in order to compare area between the curves since
we want to focus on the differences in time development and not in the mean value
and the variance. The results were based on simulations with Nu = 1000 realizations.

Y X
M

Xc g c g c c g g, , ,( ) /  1

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H0B: Identify difference in gene development for all genes 
simultaneously
We will also make a weaker hypothesis where we analyze all the genes simultane-
ously:

H0B: For all genes, the time development of Xc,g is independent of the stratum
s(c), i.e. for all genes fa,g = fb,g.

Note that we only make one hypothesis here. We perform the same Nu simula-
tions as in the hypothesis test for H0A, but we use the test statistics
V(1),o > V(2),o > ··· which is the Vg,o variables for all the genes that are sorted in
decreasing order. From the simulation, we find the probability for the ordered var-
iables gm(v) = P(V(m) > v) for m = 1,2, ..., and the p-value for the hypothesis test
p(m) = P(V(m) > V(m),o = (k + 1)/(Nu + 1) if k of the Nu simulations have
V(m) > V(m),o. Here, we have many highly correlated test statistics V(m),o for
m = 1,2, ..., for testing the same hypothesis H0B. The integer m is chosen by the
user. m = 1 means that we are only interested in the most extreme gene and m = 10
means that we are interested in the 10 most extreme genes. This method is most
interesting for 3 < m < 50, i.e. where no single gene is significant, but several/many
genes have deviating values and where we avoid the multiple testing problem. Ide-
ally, m should be decided before the data is analyzed, but this is not as critical as
when alternative test statistics are independent of each other.

H0C: Prediction of strata
It is also possible to use the same technique in order to predict the stratum of a
case. The idea is to find out if the observations Xc,g for g = 1,2, ..., Ng is closest to
fa,g(tc) or fb,g(tc) for the genes with lowest p-values in the hypothesis test H0A
above. Our ambition is only to find the quality of the prediction, not to make a
diagnosis for each case. Hence, we make the following hypothesis:

H0C: The prediction Pa,c, that the case c belongs to stratum a, is independent of
the stratum s(c).

We test the hypothesis using cross-validation. The case-control pairs are divided
into the D1, D2, ... DNd groups, which are described in more detail further down.
For each of the pairs c ϵ Dk we find

where fa,g,k(tc) is the estimated gene expression for gene g and stratum a at time tc,
i.e. the time of observation Xc,g based on all the data except the data in Dk. This is

A w X f tc a g s c a

N

g c g a g k c
g

, , , , ,( )   
   1

2
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based on the assumption that Xc,g~N(fs(c),g,k(tc), σg). The weight wg may be set
equal to , possibly modified based on the correlation between the gene
expressions for different genes and how significant this gene is for the prediction.
How important gene g is for the prediction is estimated from pg,k, the p-value for
hypothesis test HOA estimated from all the data except Dk. The prediction that the
observation Xc,g is from stratum a is then

This model gives probabilities that are approximately uniform in (0,1), see Figure
9.1. If we had assumed Xc,g~N(fs(c),g,k(tc), σg) independently for each gene g, then
most Pc,a would be close to 0 or 1, which does not correspond to our ignorance in
the classification. We use the test statistics

which is the L1 distance between the prediction for stratum a and the indicator for
stratum a. We may randomize Pc,a between the observations and find a distribu-
tion for S. The p-value for the hypothesis test H0C is found from the distribution
for S, i.e. p = P(S < So). 

We used cross-validation and therefore needed to divide the dataset into sepa-
rate groups. The 39 case-control pairs where the case died of cancer and 239 case-
control pairs where the case did not die of cancer were divided into 13 groups, D1,
D2, ... D13. The data in each stratum was divided into three time periods for each
of the two strata with an (almost) equal number of observations. Each of the 13
groups had (almost) the same number of observations from each stratum in each
of the three time periods. For each group k we find the values pg,k from the hypoth-
esis test H0A based on all the data except the data in Dk based on 1000 randomi-
zations of the strata s(c).

1 2/ g

P
A

A A
c a

c a

c a c b

,
,

, ,




S P Po
c a

c a
c b
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 
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Figure 9.1. Log2 gene expression from the 12 case-control curves with the smallest
p-value of the 8400 genes. The 12 p-values less than 0.00001. The figure uses nor-
malized data as is used in the test statistics. The black continuous and the red
dashed curves are the log2 gene expression from the case-controls who survived
and died, respectively.

RESULTS
The data used in all the analyses are the differences in log2 gene expression
between cases and controls in the period after diagnosis that are shown in Table
9.1, i.e. 278 case-control pairs.

Testing H0A
Results from testing the H0A hypothesis are shown in Table 9.2. The function of
the top 10 is shown in Chapter 10.
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Table 9.2. The 50 genes with smallest p-value from the 39+239 dataset with meta-
static and invasive cancer. The columns show the name, p-value, q-value and area
between the smooth curves between the cases who survived and died.

Gene p-value q-value ∫|fa,g(t) – fb,g(t)|dt

CCM2 2.38e-07 0.0016 1997

C14orf45 7.14e-07 0.0016 1883

LOC650898 1.07e-06 0.0016 1869

ARL4A 1.07e-06 0.0016 1867

CBX3 1.36e-06 0.0016 1842

LOC646783 1.90e-06 0.0016 1823

FSTL4 1.90e-06 0.0016 1820

C5orf30 1.90e-06 0.0016 1816

LOC389293 1.90e-06 0.0016 1812

BPGM 2.07e-06 0.0016 1798

RBM4 2.17e-06 0.0016 1789

AHSP 2.28e-06 0.0016 1788

CA1 3.21e-06 0.0020 1775

RP11-529I10.4 3.33e-06 0.0020 1766

ISCA1L 3.69e-06 0.0021 1757

NCBP1 4.42e-06 0.0023 1739

DARC 8.09e-06 0.0040 1697

HPS1 9.43e-06 0.0043 1686

TSTA3 9.65e-06 0.0043 1686

PDSS1 1.16e-05 0.0046 1668

STOM 1.19e-05 0.0046 1667

DHX29 1.21e-05 0.0046 1666

RBBP4 1.41e-05 0.0051 1658

RNF11 1.51e-05 0.0051 1653

FZD1 1.51e-05 0.0051 1652

RIPK4 1.75e-05 0.0053 1643

RBM28 1.81e-05 0.0053 1639

XK 1.88e-05 0.0053 1636

KIAA0174 1.92e-05 0.0053 1633

LOC646508 1.92e-05 0.0053 1633
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The q-values are the FDR-corrected p-values. From 8400 genes, 733 genes had q-
values below the given threshold for hypothesis test H0A (97 with q<0.01 and
636 with q<0.05). The result shows that many genes have a different time devel-
opment between the two strata. The reduced dataset with only metastatic breast
cancer is too small to get significant results on this test. Figure 9.2 shows the
functions fdied,g(t) and fsurvived,g(t) separately for each of the 12 most significant
genes of the 8400 genes (p<0.000001). The test statistics is the area between the
pair of curves.

GYPB 1.94e-05 0.0053 1632

MGC13057 2.06e-05 0.0053 1627

LOC649604 2.06e-05 0.0053 1627

BNIP3L 2.28e-05 0.0055 1618

TRIM10 2.29e-05 0.0055 1616

SLC14A1 2.36e-05 0.0055 1615

C14orf124 2.41e-05 0.0055 1615

EWSR1 2.88e-05 0.0062 1603

TRAK2 2.89e-05 0.0062 1603

SELK 3.34e-05 0.0070 1592

HMBS 3.39e-05 0.0070 1590

NUDT1 3.67e-05 0.0071 1585

SRRD 3.79e-05 0.0071 1583

WDR89 3.81e-05 0.0071 1583

NR1D1 3.85e-05 0.0071 1581

SLITRK1 3.91e-05 0.0071 1579

HEMGN 3.96e-05 0.0071 1577

DNAJB1 4.24e-05 0.0074 1570

LOC649044 4.31e-05 0.0074 1569

PPIA 4.66e-05 0.0075 1563

Gene p-value q-value ∫|fa,g(t) – fb,g(t)|dt
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Figure 9.2. Log2 gene expression from the case-controls curves for the 12 genes
with smallest p-value of the 8400 genes. The black continuous and the red dashed
curves are the log2 gene expression from the case-controls who survived and died,
respectively.

As shown for most genes, the gene expression increases. Noticeably, fsurvived,g(t) is
almost constant and close to 0 in the entire period while fdied,g(t) is closer to 1 or
–1 in the period (1000,1500) days and then for many genes closer to 0 after 1500
days. The normalization (1) implies that the data for each gene have average value
0 and standard deviation 1 in order to compare data between genes. Since the stra-
tum that survived is much larger, it is natural that the average of these curves is
smoother and close to 0. The statistical test shows that deviation in averages value
between the strata is significant for many genes. The p-value depends on whether
there is a systematic difference in level or time variation of the gene expression, not
the size of the difference in average value between the strata since this is removed
in the standardization.
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H0B: identify difference in gene development for all genes 
simultaneously
We also want to test all the genes simultaneously. Since we only make one test, it is
easier to reject the hypothesis for a smaller dataset. First, we test hypothesis H0B
on the dataset with 39 and 239 case-control pairs. There is only one hypothesis, but
we have many different test statistics, one for each of m ordered V(m) test statistics
for the area between the two curves. The different test statistics indicate whether
there is a strong difference in the time development in one or a few genes com-
pared to a smaller difference in many genes. The test for each of the ordered vari-
ables is highly correlated. Table 9.3 shows the p-values from the H0B.

Table 9.3. The p-values from hypothesis test H0B for each of the ordered variables.
The upper row is from the 39+239 dataset with metastatic and invasive cancer and
the lower line is from the 23+79 dataset with metastatic cancer. “<0.001” means that
we have not observed any simulated values above the observed value from the
data. The lower row shows the p-values from hypothesis test H0B for the reduced
dataset on metastatic breast cancer.

Notice that we get very significant results and that many genes have a different
time development between the two strata.

This test is also performed on the reduced dataset with only metastatic breast
cancers. There are only 23 and 79 case-control pairs in the two strata (Table 9.1),
those with metastases who died of breast cancer and those who did not die of can-
cer, respectively. We still get significant p-values, but much larger values than in
the larger data set with both metastatic and invasive cancer; see Table 9.4. The dif-
ferently ordered variables are highly correlated and give typically p-values between
3–6%.

H0C: Prediction of strata
We also want to test whether it is possible to predict the stratum of each case by
testing hypothesis H0C. The 13 different datasets leaving out one of the groups Dk
give a slightly different rankings of the importance of the different genes. The
mean correlation between the rankings of the genes for these 13 datasets is 0.85.

Ordered 
variables

1 5 10 25 50 100 500 1000

39+239 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

23+79 0.003 0.061 0.043 0.036 0.037 0.034 0.045 0.052
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Table 9.4 shows that there is a large overlap in the most important genes in the 14
different datasets when we include the ranking using all the data. On average, four
of the five genes with the lowest p-value when using the entire dataset were among
the 10 smallest p-values in the reduced datasets. We have marked the five genes
with the smallest p-values when using all the genes with colors. Notice that many
of the same genes have small p-values for the different subsets.

Table 9.4. Ranking of the 10 most important genes when we leave out Dk from the
dataset. The lowest line is the most important genes when we use all the data.

We have tested different predictions methods, i.e. different choices of the weights
wg,k. The different choices give highly correlated probabilities. We have found out
that wg,k = 1/pg,k for the 50 genes g with smallest pg,k value for each group is a quite
robust choice. Figure 9.3 shows the predicted probabilities for each of the 278 case-
control pairs after time of follow-up. Ideally, we wanted all the 39 red and yellow
circles to be equal to 1 and the remaining circles equal to 0.

Dk Ranking of the most important genes for each of datasets 

1 CCM2, C14orf45, LOC650898, BPGM, FSTL4, AHSP, CA1, C5orf30, LOC389293, ISCA1L 

2 CCM2, LOC650898, C5orf30, C14orf45, BPGM, RBM4, LOC389293, RP11-529I10.4, ARL4A, 
CA1 

3 CCM2, LOC646783, C5orf30, CBX3, FSTL4, RBBP4, LOC650898, RBM4, AHSP, PPIA

4 FSTL4, ARL4A, CBX3, LOC650898, C14orf45, LOC389293, DARC, CCM2, LOC646783, ISCA1L 

5 CCM2, LOC650898, C14orf45, CBX3, ARL4A, C5orf30, BPGM, AHSP, RBM4 

6 CCM2, C5orf30, C14orf45, ARL4A, CBX3, BPGM, FSTL4, LOC650898, RBM4, AHSP 

7 LOC646783, ARL4A, NCBP1, CBX3, CCM2, C5orf30, LOC650898, LOC649604, C14orf45, 
LOC389293

8 CCM2, CBX3, C14orf45, BPGM, ARL4A, NCBP1, RP11-529I10.4, LOC646783, LOC389293, CA1 

9 CCM2, FSTL4, TSTA3, ARL4A, C14orf45, KIAA0174, AHSP, LOC389293, RP11-529I10.4, 
ISCA1L 

10 C14orf45, LOC389293, LOC646783, ARL4A, LOC650898, FSTL4, ISCA1L, RP11-529I10.4, CBX3, 
FZD1 

11 CCM2, C14orf45, RBM4, C5orf30, LOC389293, ISCA1L, LOC650898, LOC646783, PDSS1, CA1 

12 CCM2, ARL4A, CBX3, LOC650898, NCBP1, C14orf45, RP11-529I10.4, LOC389293, LOC646783, 
CA1 

13 CCM2, C5orf30, FSTL4, LOC650898, DMD, CBX3, RBM4, ARL4A, CXCR4, LOC646783

all CCM2, C14orf45, ARL4A, LOC650898, CBX3, C5orf30, FSTL4, LOC389293, LOC646783, BPGM 
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Figure 9.3. The prediction of dying from cancer for the cases who died of breast
cancer, died of other types of cancers and died, but not from cancer, and cases who
survived for each of the 278 case-control pairs. The figure to the left shows predic-
tions for cases with invasive cancer, while the figure to the right shows prediction
for cases with metastatic cancer.

Based on these variables, we find Pc,a, So and the p-value p = P(S < So) based on the
10 000 randomization of Pc,a We find the p-value less than 0.004 indicating that
the prediction is far from random. Table 9.5 gives another presentation of the pre-
diction based on whether Pc,a > 0.3 or not.

Table 9.5. Prediction for each of the 278 cases based on a threshold equal 0.3

Increasing the thresholds from 0.3 will decrease both the number of true positive
and the number of false positive. The threshold 0.3 is chosen as a balance between
false positive and false negative. This gives a sensitivity equal 0.56 and specificity
equal 0.69. The mean prediction value for the 39 cases who died is 0.32 and the
mean prediction value for the 239 cases who survived is 0.23. The predictions are
also shown in the boxplot in Figure 9.4.

Sum Pa,c > 0.3 Pa,c < 0.3

Cases who died of cancer 39 22 17

Cases who did not die of cancer 239 75 164
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Figure 9.4. Boxplot of prediction of death from cross-validation of cases after 18
months from diagnosis. Horizontal lines describe 0.25, 0.5 and 0.75 quantiles. The
number of cases and mean in the four categories are metastatic cancer where case
died, no: 27, mean 0.33, invasive cancer where case died, no: 12, mean 0.29, meta-
static cancer where case survives, no: 82, mean: 0.29, invasive cancer where case
survives no: 157, mean: 0.22.

Notice that the invasive cases who died and the metastatic cases who survived have
a relatively similar prediction which is between the prediction of the metastatic
cases who died and the invasive cases who survived.

DISCUSSION
We have shown that the trajectories of gene expression after diagnosis of breast
cancer were mostly significantly upregulated for hundreds of genes in the years
after a diagnosis of metastatic breast cancer compared to invasive cancer, as shown
in Figure 9.4. These signals may be considered as signals of an upcoming death due
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to cancer. Fewer genes were downregulated. After some years, most upregulated
genes levelled off while downregulated genes slowly returned to the normal
expression level. Among women with invasive breast cancer, no significant trajec-
tories were found. These results were based on a new statistical approach using the
differences in the area between the trajectories of gene expression between dis-
eased and healthy women.

For practical and economic reasons, only one single measurement at time of
inclusion was available for each individual in the NOWAC postgenome cohort.
Hence, the processual approach relies on the assumption that the gene expression
in distinct individuals at different times before or after diagnosis is a consequence
of the same carcinogenic process (Lund & Plancade, 2012). Semi-parametric mod-
els with time-varying covariates, e.g. the Cox model (Cox, 1972), cannot be esti-
mated from a prospective design including only one unique measurement at time
of inclusion, unless covariates are assumed to be constant over time. Consequently,
this assumption would not allow us to address changes in gene expression over
time.

The DTDS is a further development of the LITS method (Holden, Holden,
Olsen, & Lund, 2017), where we used a moving window and summary statistics for
all genes for each of the stratum and time period. The genes that were significant
in each time interval varied between the intervals, making the LITS method not
suitable for identifying genes with different time development. In contrast, the
DTDS method is able to identify genes with different time development. Both
methods use the same method for simulation and randomization of gene expres-
sions between the case-control pairs with cases from the different strata.

The distribution of measurements of gene expression must follow a constant
function, i.e. with measurements spaced over the time interval. Most cohort stud-
ies have repeated measurements, but usually they are collected for all participants
with several years of spacing and can be used as repeated measurements only.

We cannot predict the outcome for single individuals, only on a group level. The
results can be looked upon as a proof of concept for the idea that gene expression
measured repeatedly over time after diagnosis can be used as a predictive test for
the vital outcome.

Little is known about the changes in gene expression in the blood in the period
after a breast cancer diagnosis, i.e. the time period after the primary treatment
(Lund & Plancade, 2012). In the stratified analysis, both invasive and metastatic
cases were compared to healthy women without known cancers. The consistent
and highly significant differences between the two strata adds information that
can be used toward a new hypothesis of metastatic breast cancer and its high
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lethality. For hundreds of genes, the integrated area between the two curves for
each stratum accumulates during follow-up, indicating ongoing dysregulation of
important genes. These strong changes in gene expression from the immune cells
can be viewed as signals of upcoming death. The intention here was to explore the
unknown trajectories of gene expression after diagnosis of breast cancer. The
interpretation of each gene was outside the scope of our exploration. Still, some
hypotheses can be put forward.

Human model of carcinogenesis—interpretation of highly 
expressed genes
No unifying theory exists for human carcinogenesis; the number of proposals is
many (Vineis, Schatzkin, & Potter, 2010). To date, most mechanistic or pathways
analyses have been experimental in-vitro or animal studies. With the increasing
knowledge about human carcinogenesis in tumor tissues or in blood at time of
diagnosis, some disturbing facts about the validity of the animal models for human
carcinogenesis have been brought up. First, the biology of mice and men is com-
paratively different (Mak, Evaniew, & Ghert, 2014; Anisimov, Ukraintseva, & Yas-
hin, 2005), and a controversial Nature editorial (“Of men, not mice”, 2013) advo-
cated the need for human functional studies. Similarly, the translational value of
mouse models in oncology drug development was recently questioned (Gould,
Junittila, & de Sauvage, 2015). While cancer can be manufactured in mice quite
easily, these models do not necessarily apply to humans (Mak et al., 2014). Conse-
quently, an increasing number of studies use functional genomics as biomarkers,
looking both at the exposure relationship and the outcome. While interesting, this
approach lacks the distinct focus on the time-dependent process of carcinogenesis.
Few, if any, prospective studies have been designed for longitudinal analyses of
functional genomics related to the processes of carcinogenesis and metastasis.

Table 9.6. Annotated functions of the most significant genes from Table 9.2

CCM2 Regulate angiogenesis and formation of new blood vessels

C14orf45 Gene responsible for cilia orientation. One paper shows as low-expressed gene associated 
with poor survival in BC (higher number of cylia is necessary for improved migration of 
breast cancer cells)

ARL4A Increase cell migration

CBX3 Shown to be overexpressed in BC and associated with low survival, might block 
differentiation and promote self-renewal of cancer stem cells
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The interpretation of these genes points towards important changes in genes
known to be affected at breast cancer, and in addition some more general ones.

During the different laboratory steps, several decisions had to be taken on level
of noise and the use of specific distribution of noise. Further, since a gene maybe
not expressed in all individuals, the percentage of cases or controls with sufficient
signals had to be decided. The stronger the criteria moving towards hundred per-
cent, the harder the exclusion.

The strength of the study is the unique biobank created with the purpose of gene
expression analysis in peripheral blood. This gave a unique opportunity to study
the immune response since the mRNA in blood came from immune cells. This
opened for the view that the carcinogenic process not only included exposures to
carcinogens, but also has an important counterforce in the immune system. This
has been known for more than a hundred years, and today documented through
the new immune therapies.

The design has been population-based with a complete follow-up on cancer
incidence, emigration and death based on linkage to national registers using the
unique national birth number given to all residents in Norway from 1960. In addi-
tion, we had access to updated information on metastases and second breast can-
cers in the time between inclusion and blood donation. This somewhat reduced
the noise from carcinogenic processes hidden at the time of diagnosis.

CONCLUSION
In this systems epidemiology approach, we have given a proof of concept for the
use of gene expression as an individualized biomarker of prognosis related to death
or not. The design of NOWAC is population-based and the results should be vali-
dated in a more specific clinical setting. With improved technology and individual
repeated measurements gene expression followed over time could offer a unique
opportunity for personalized treatment of metastatic breast cancer.

FSTL4 Shown to be involved in BC cell migration in mice. Was discussed in relation to late distant 
metastases in BC here without any conclusions (Mittempergher et al., 2013)

C5orf30 Known to be expressed in BC and especially in lymph-node metastases. Promote 
inflammation and hypothesized to reduce immune response against cancer cells

RBM4 Known tumor suppressor in BC
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