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Abstract: We applied evolutionary game theory to extend a resource constrained security game model
for confidentiality attacks and defenses in an Advanced Metering Infrastructure (AMI), which is a
component of IoT-enabled Smart Grids. The AMI is modeled as a tree structure where each node
aggregates the information of its children before encrypting it and passing it on to its parent. As a
part of the model, we developed a discretization scheme for solving the replicator equations. The aim
of this work was to explore the space of possible behaviors of attackers and to develop a framework
where the AMI nodes adaptively select the most profitable strategies. Using this model, we simulated
the evolution of a population of attackers and defenders on various cases resembling the real life
implementation of AMI. We discuss in depth how to enhance security in AMI using evolutionary
game theory either by a priori analysis or as a tool to run dynamic and adaptive infrastructure defense.

Keywords: adaptive security; evolutionary game; Internet of Things; advanced metering infrastructure;
smart home

1. Introduction

Smart grid systems are intended to optimize the usage of electrical resources. These systems
are complex Cyber-Physical Systems (CPS) exposed to various security challenges. An advanced
metering infrastructure (AMI) is one of the main communication components of the smart grid that
consists of communication networks connecting smart meters and collectors. The AMI collects and
processes data from large number of devices and reports the results over communication networks.
It can provide advanced services, such as monitoring, alarm, billing, remote home control, intrusion
detection, fault tolerance, and software updates [1]. Monitoring the smart grid can contribute to grid
stability. The alarm functionality can address alarms for components failures in the grid and/or alarms
in the Smart Home. The billing functionality could be for total consumption every hour or max usage.
The remote home control functionality can control home devices by interacting with, e.g., the heating
system. The intrusion detection functionality can monitor hacking attempts to the home, the control
center, and any entity in between.

While providing advanced services, AMIs also introduce several security risks including attacks
on confidentiality. The report [2] shows that connected Internet of Things (IoT)/CPS devices will
grow at a Compound Annual Growth Rate (CAGR) of 13 percent with 26.9 billion related to the IoT
in 2026. The rise of large scale interconnectedness and often outdated design of the devices present
a significantly expanded attack surface. Despite the significant efforts in securing IoT/CPS-enabled
smart grid systems, many remain vulnerable to various advanced and evolving cyber-attacks [3–5].
There are several reasons for this. IoT/CPS-enabled smart grid systems rely upon wireless networks.
It makes them vulnerable for eavesdropping. These devices may also be unattended for prolonged
periods of time leaving them vulnerable to physical attacks, and most devices limited in energy and
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computing power do not allow for the implementation and use of complex security schemes [6,7].
A recent survey [8] has shown that False Data Injection (FDI) attacks also threaten state estimation in
smart grids.

Furthermore, adaptive attackers will adapt their strategies to the current security situation,
and to newly deployed countermeasures. Such emerging attacks can become very sophisticated
and can be coordinated [9], persistent [10], and collaborative or cooperative with specialized attack
expertise [11]. Examples of such coordinated attacks include data injection attacks concurrently
occurring from multiple adversaries [12], large-scale stealthy scans, stuxnet worm outbreaks and
Distributed Denial-of-Service (DDoS). Such adaptive, collaborative or coordinated attacks require
adaptive, collaborative or coordinated defenses. Therefore, the confidentiality of AMI data must be
protected within the AMI system, in transit or at rest, which requires significant collaboration, evolution
and adaptation in the security of the AMI. Evolutionary game theory (EGT) lends itself to model
the dynamic interplay between the way attackers adapt and evolve their behaviors as evolutionary
attacks and the way defenders anticipate the unknown and prevent dynamic, adaptive attacks that
evolve over time. Evolutionary game theory studies adaptive rules that govern dynamic behavior.
It offers, a solid basis for realistic and intelligent decision making in an uncertain world, describing
how individuals make decisions and interact in complex environments in the real world [13].

The components in the AMI need to collaborate to achieve a common goal in collecting,
aggregating, transmitting and securing the data. The data confidentiality attack in the AMI is
unauthorized access to sensitive information between utilities and users by targeting the AMI
components, such as smart meters, data concentrators, communication networks, and a central,
or head-end, system. Users’ consumption habits and other relevant information must be protected
from access by unauthorized persons or companies. The data sets in the head-end system must only be
accessed by authorized systems or users. Confidentiality is, therefore, one of the primary concerns in
AMI. As demonstrated in Reference [14], integrity and confidentiality attacks cause monetary effects
on the AMI which in turn have cascading effects to other interdependent critical infrastructures, such
as health, finance, and telecoms. In this paper, we focus on evolutionary game for confidentiality
attacks and defenses for the AMI.

Previously, we have introduced an evolutionary game framework [15] that models evolving
attacks and defenses in connection with data integrity for smart grid systems. The novel contributions
of this paper are:

• the formulation of the AMI evolutionary game and the derivation of a numerical scheme for
this game,

• the simulations of the evolutionary game on realistic AMI cases for confidentiality,
• the identification of constraints, and
• analysis of the confidentiality evolutionary game allowing the defender to explore the space of

strategies and to select the optimal set of solutions.

The remainder of the paper is organized as follows. Sections 2 and 3 give a brief literature
survey and present theoretical background for this work, respectively. In Section 4, we introduce our
system and game model, formulate the confidentiality game as an evolutionary game using replication
dynamics, and discretize the evolutionary game model and derive a numerical scheme for solving the
evolutionary dynamics. In Section 5, we carry out simulations on relevant AMI cases for confidentiality
and demonstrate how this can be used to inform the AMI security. The simulation results are presented
and discussed in Section 6. Finally, we conclude and discuss the future work in Section 7.

2. Related Work

The IoT/CPS system brings great benefits to the cyber physical IoT-enabled smart grids
by connecting people, processes, services, devices, and data. However, the rise of large scale
interconnectedness presents a significantly expanded attack surface. There exist significant efforts to
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secure the IoT-enabled AMI, which is the core component of the smart grid. In this section, we give
a brief review of these efforts. The research that studies game theoretical approaches for modeling
the evolving nature of cyber-attacks inside the IoT-enabled AMIs is not addressed sufficiently in the
literature. In this section, we present the work on modeling security threats for IoT-enabled smart
grids with constrained processing resources. In this work, we use evolutionary game theory. Therefore,
this section also discusses literature review regarding applications of evolutionary game theory for
IoT-enabled smart grid.

The IoT-enabled AMI is an integrated system of smart meters, collectors, communications
networks, and data management systems which support the safe, efficient, and reliable distribution of
electricity and advanced functionality to energy customers [16]. Unfortunately, the power grids have
been the target of sophisticated cyber-attacks which could lead to grid shutdown, cascading failures,
damage to the infrastructure, and potential harm to people [17]. Such targeted attacks could have
devastating effects on government, trade, commerce, banking, transportation, and other important
aspects, which rely on energy to operate. A compromise of AMI may also result in an invasion of
privacy and provide a surface from which to extract information from users, such as Internet activity,
financial, or health records [17]. The AMI poses several well known security threats [18–21].

As the IoT-enabled AMI is the core component of the smart grid, it is thus important to identify
the attack surface and protect it from cyber-attacks. The cyber-attack surface of the AMI has been
quantified and examined [17]. It is also important to measure the significance of threats and how they
can transpire into attacks in the AMI environment. Different categories of attack types and analysis of
the various countermeasures against these attacks have been studied [22]. A methodology for assessing
security, privacy and dependability in a combined manner in the smart grid has been developed
and measureable security in smart grids has been introduced [1]. A controlled Markov-Gaussian
process has been suggested to minimize the damage of advanced persistent threats in cyber-physical
systems [23]. He and Yan [24] provide a systematic review of the critical cyber-physical attack threats
and defense strategies in the smart grid, as well as discuss a wide range of opportunities and challenges
in enhancing energy security by maintaining the integrity of smart grid under complex cyber-physical
attacks. Ismail et al. [25] presented a noncooperative game for attacks on data confidentiality for
smart-grid AMI and studied the strategies of the attacker and the defender at the Nash equilibrium.
Applying this model, the authors defined the optimal strategy of the defender and the minimum
resources required for defending the assets.

Evolutionary game theory is a branch of game theory. Evolutionary game theory, rooted in
classical game theory and the theory of evolution [26], has been effectively studied to model population
dynamics in biology and economics domains, but its application to smart grid security has not been
fully exploited. Santos et al. [27] argue that, by using a dynamical approach, such as evolutionary
game theory, one is able to follow the self-organization process by which a population of individuals
coordinates into a given behavior. Hoffman et al. [13] argue that evolutionary dynamics is a powerful
tool for specifying changes in strategies over time in a population. Quijano et al. [28] addressed the
advantages of evolutionary game theory in the role of population games and evolutionary dynamics
in distributed control systems. Ficici et al. [29] present a game-theoretic investigation of selection
methods used in evolutionary algorithms. The three main advantages of using EGT in engineering
problems and an outstanding advantage of distributed population dynamics compared to distributed
learning algorithms are described in Reference [28].

Evolutionary game has been successfully applied to the areas of Advanced Persistent Threats
(APTs), evolving interactions between an attacker and a defender, detecting DDoS, and wireless
sensor networks. Alabdel Abass et al. [10] studied APTs that represent stealthy, powerful, long-term,
and well-funded attacks against cyber systems, such as smart grids, data centers, and cloud storage.
The authors capture the long-term continuous behavior of the APTs on the cloud storage devices
using evolutionary game. Bouhaddi et al. [30] model the evolving interactions between an attacker
and a defender in MANET as an evolutionary game. In this model, each player learns about the
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behavior of its opponent over time and adjusts its strategy. Vejandla et al. [31] present evolving gaming
strategies for attacker-defender in a simulated network environment. Detection of DDoS attacks using
an artificial immune system-inspired multi-objective evolutionary algorithm has been investigated
in Reference [32]. Evolutionary game theory has also been used for modeling wireless sensor
networks [33–38]. An overview of evolutionary computation and other computational intelligence
technology contributing to meet security challenges can be found in Reference [3].

Although our work is partly motivated by the related work above, there are some distinctions
compared with them. The unique characteristics and usage scenarios of IoT-enabled AMI in the
smart power grid introduce new security challenges. The increasing share of pervasive IoT devices
which lack computing power, security, and privacy in such environments is a challenge—not to
mention provisioning of adaptivity to tackle dynamicity and evolution. An accurate and resilient
evolutionary game-based adaptive confidentiality assessment on IoT-enabled AMI entities is required.
Given the dynamics in the AMI environment, the ability of the AMI nodes to adjust their confidentiality
protection in response to their perception of the environment and the systems themselves should
be provided. Although there are many research contributions about confidentiality in AMI systems,
most of them have not considered these and fall short defining a framework for building dynamic and
flexible defense for AMI with population dynamical methods for designing defense mechanisms for
robust and reliable AMI cyber systems. Our work is similar to Ismail et al. [25]’s work in that it models
the AMI as tree structure and in that it is a similar game model for confidentiality protection. It differs
from their noncooperative classical game, which assumes player’s rationality, in that it is a population
game with continuous game and no rationality assumption. The proposed solution is adaptive using
the replicator dynamics for players to adapt their strategies, addresses the problem of evolutionary
attacks, and uses a numerical simulation to solve the replicator dynamics.

Our analysis shows that the presented related work mostly studies scenarios where a single
adversary attacks one resource at a time. In reality, multiple attackers can cooperate and launch joint
attacks. They can share their knowledge about previous attacks, learn from each other’s experiences,
and coordinate future actions by selecting successful strategies. The defenders can also collaborate and
share the acquired experience to choose the optimal strategies for their defenses. We recognize that the
collaborations between multiple adversaries and multiple defenders have not been fully researched
in the previous work. This motivates us to study and to apply evolutionary game theory to these
advanced scenarios to explore the space of strategies, as well as to select the optimal set of solutions.
It will allow the defender to choose the best possible strategy and to continuously stay ahead of the
attacker in defending the security intelligence.

3. Evolutionary Game Theory

In this section, we give an overview of evolutionary game theory that is further used in our
formulation of the AMI confidentiality game. While classical game theory has been traditionally
applied to model attacks on smart grid systems, it is a static approach that computes Nash equilibria
and the corresponding utilities for the participating players. The main idea behind classical game
theory is how rational individuals are expected to behave in conflict situations.

Formally defined, a game consists of N players and a strategy space S. Each player can select a
strategy si ∈ Si ∈ S, where Si is the strategy space of the i’th player. When a player selects a particular
strategy, the corresponding payoff depends on this strategy and on decisions made by other players.
The utility function is defined as Ui : S→ R, where S = S0 × S1 × · · · × SN .

A Nash equilibrium (NE) is a strategy set s∗ ∈ S such that

Ui(s∗i , s∗−i) ≥ Ui(si, s∗−i) ∀i, si ∈ S, (1)

where s−i ∈ S− Si, the strategy space excluding player i. In a Nash equilibrium, no single player can
increase its utility by unilaterally changing strategy.



Information 2020, 11, 582 5 of 19

Certainly, the limitations, such as rational and static features, do not reflect the way the real world
behaves in most situations. Inspired by the theory of evolution, evolutionary game theory [39] was
introduced to overcome these limitations.

Evolutionary game theory borrows the notation from classical game theory, like strategy spaces,
payoff matrices, and utility functions. Differently from classical game theory with its focus on rational
individuals, evolutionary game theory considers populations of players that adopt various strategies
and play contest against each other. It studies how successful these populations are in their choices
of strategies and how more successful strategies are passed to the next generations. Therefore,
it models the dynamics and evolution of populations of players given a distribution of strategies.
Generations of population evolve based on the success of individual strategies compared to the success
of overall population.

This evolution process is governed by two key elements:

1. mutation mechanism that is represented by the Evolutionary Stable Strategy (ESS) concept; and
2. selection mechanism that is represented by the replicator dynamics.

The ESS concept is considered to be a refinement of NE and it represents an ability to evolve.
It outperforms any alternative mutant strategies. In other words, a strategy x is defined as an ESS
if, for any other strategy y, some threshold fraction of mutants εy ∈]0, 1[ exists that Equation (2) is
satisfied for all ε ∈]0, εy[ :

U (x, ε× y + (1− ε)× x) ≥ U (y, ε× y + (1− ε)× x). (2)

Thus, the strategy x is defined as evolutionary stable if this inequality holds for any mutant
strategy, if the share of mutants in this population is sufficiently small [40]. A group of players
choosing ESS will not be replaced by players that choose a different strategy. It is shown [40] that a
strong connection between ESS and NE exists. If a strategy x is an ESS, then x is a Nash equilibrium,
and, if x is a strict Nash equilibrium, then x is an ESS.

The second important concept is the replicator dynamics [41] that governs evolution of the
strategies and is defined as following.

∂xi(t)
∂t

= (U(xi)−UA(x))× xi(t). (3)

Here, xi is the proportion of strategy i in the population x = (x1, . . . , xn). U(xi) is defined as an
expected utility of strategy i, and UA(x) is defined as an average population utility. Playing a game,
different individuals from a population are able to compare their strategies to the average population
result and learn from each others experiences. The replicator dynamics is applied to adjust their
strategies. If ESS exists, the evolution dynamics leads to ESS [42].

Further improvement of the replicator equation was suggested in Reference [43]. The authors
proposed to add stochastic elements to better address dynamic stability. In this work, we use the
replicator equation with stochastic elements.

4. Models and Numerical Scheme Development

This section presents the system, threat, and game models for the AMI. Further, it defines the
evolutionary game for confidentiality attacks and defenses based on these models. We propose
a numerical scheme by discretizing the strategy spaces and deriving a discrete version of the
replicator equation.

4.1. System and Threat Model

The work considers a network scenario where adversaries attack an AMI network trying to
compromise confidentiality and obtain unauthorized access to the information transmitted inside the
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network. In this scenario, we assume that the adversary has knowledge about the network topology
including transmission technology. Further, we assume that the system deploys an intrusion detection
system (IDS) to detect malicious behavior.

The configuration of an AMI is modeled as a graph that connects nodes representing individual
meters, collectors, and the head-end system. Further, we define a set of nodes N = {0, 1, 2, . . . , n} that
comprise the AMI network. The head-end system (HES) node is defined as the top node n0. We have
two sets of nodes: collectors and meters. Meters collect the data and forward the data to the HES
node using collectors as transmitters. Some nodes can perform as both meters and collectors. Due to
the hierarchical nature of the information aggregation taking place, we represent the AMI as a tree
structure, as shown in Figure 1. The tree is static, meaning that vertices and edges do not change over
time. Except for the HES node that does not have a parent, the rest of the nodes have one parent and
may have multiple children.

Figure 1. Illustration of the components in the Advanced Metering Infrastructure.

Confidential data is collected by meters, aggregated at meters/collectors, and transmitted by the
network to reach the head-end system. The information sent from each node has a quantified value
and is the sum of the value of the information gathered at the node and the value of the information
collected from the node’s children.

We denote f (i) : N → N as the parent of node i, and the set

Chi = {j ∈ N : f (j) = i} (4)

as the children of node i.
As all meters are leaf nodes, the set Chi is empty for these nodes.
The AMI nodes can run on different security levels determining the probability of protecting the

data before transmitting. Due to its limited computational budget, an AMI node is not capable
of protecting all messages. In addition, the AMI uses an IDS to detect possible attacks. Thus,
these resources are also taking in consideration.

A set of adversary nodes exists that can connect to and attack the AMI. We assume that the attacker
cannot access the cryptographic keys and has no control over the encryption process. To intercept a
message generated by the meter ni, the adversary node can attack either the meter or any of collectors
that forward the message. Attacking a leaf node, or a meter, is less expensive than attacking a collector.
However, a successful attack on a collector gives higher payoff. For each node, we define a probability
for protecting the messages as ti. For each adversary node j, we define a probabilty for attackings an
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AMI node ni as si,j. For each node, the costs of defense and attack are given as cd
i and ca

i , respectively.
The collected messages represent a certain value. For quantifying these values, we present an asset
value vi for each node ni. We assume that these values are constant over time.

4.2. Game Model

We consider the following confidentiality game that involves two classes of players, attackers, and
defenders. The attackers and defenders meet pairwise and play the game. The attacker and defender
do not have any knowledge of the opponent’s choices and choose their strategies simultaneously.
The game is a discretization of a continuous game and can be considered as a special case of a resource
constrained network security game [44].

The attackers choose attack rates (or probabilities) si ≥ 0 for attacking the node labeled i.
The attacks are assumed to be subject to the budget constraint

N

∑
i=1

si ≤ BS, (5)

where N is the total number of nodes in the tree, and BS is the attacker budget. Hence, the strategy
space for the attacker is given by

S = {s ∈ [0, 1]N : ∑
i

si ≤ BS}. (6)

Similarly, the defenders choose defense rates ti ≥ 0 for defending node i. The defense rate is the
proportion of data that is encrypted before transmitting it to its parent node. In particular, for ti = 1,
the data sent from node i is assumed impossible for the attacker to obtain. The defense rates are
assumed subject to the budget constraint,

N

∑
i=1

ti ≤ BT , (7)

where BT is the defender budget. Hence, the strategy space for the defender is given by

T = {t ∈ [0, 1]N : ∑
i

ti ≤ BT}. (8)

We model an AMI as a tree structure, and we assume that, in order to intercept data sent from
node i, the attacker can choose to either attack node i directly or the parent node f (i). We consider that
the cost of attacking and encrypting data on node i are proportional to the value of the data.

The utility function UA : S× T → R for the attacking player is given by

UA(s, t) =
N

∑
i=1

(vi (si + s f (i))(1− ti)− siCA,i) =
N

∑
i=1

(visi(1− ti)− siCA,i) +
N

∑
i=1

∑
j∈Chi

vj si(1− tj), (9)

where CA,i is the cost of attacking node i, and vi is the value of the information collected at node i.
Note that a factor appearing in the work of Ismail et al., (1− a) where a is the detection rate, is omitted
here for simplicity. It is a scaling of the node values and has no quantitative influence on the model.

Similarly, the utility function UD : T × S→ R for the defending player is

UD(t, s) = −
N

∑
i=1

(vi (si + s f (i))(1− ti) + tiCD,i = −
N

∑
i=1

(vi si(1− ti) + tiCD,i)−
N

∑
i=1

∑
j∈Chi

vj si(1− tj), (10)

where CD,i is the cost of defending node i.
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4.3. Evolutionary Game Formulation

In this section, we proceed with the main novel contribution of this work, the application
of the model [25] in an evolutionary game. To this end, we assume that there are populations
of attackers and defenders, represented by probability measures Ps(S) and Pt(T), respectively.
The measures represent the distribution of the overall population over the attacker and defender
strategy space. Different strategies of population evolution exist, and, for the current work, we use a
replicator equation.

The replicator equation favors the choices of strategies which perform well (in terms of utility)
relative to the overall population. Let

πA(s, Pt) =
∫

T
UA(s, t′)Pt(dt′) (11)

be the expected payoff for an attacker given a defender population Pt. We can formulate a similar
payoff for the defending population, denoted D. For the defenders, we have the expected payoff

πD(t, Ps) =
∫

S
UD(t, s′)Ps(ds′), (12)

given an attacker population Ps. Note that Equations (11) and (12) form a couple set of equations
defining the dynamics between the attacking and defending populations.

Equations (11) and (12) can be integrated over the attacking and defending populations,
respectively, to yield the average payoff. Given the attacker and defender populations Ps and Pt

we obtain
πA(Ps, Pt) =

∫
S

πA(s′, Pt)Ps(ds′) =
∫

S

∫
T
UA(s′, t′)Pt(dt′)Ps(ds′). (13)

Similarly, the average payoff for a defender given the same populations is given by

πD(Pt, Ps) =
∫

T
πD(t′, Ps)Pt(dt′) =

∫
T

∫
S
UD(t′, s′)Ps(ds′)Pt(dt′). (14)

We can combine Equations (11)–(14) with the evolutionary replicator dynamic with noise [43]
to model the evolution of any set of strategies. For any subset of attacking strategies S̄ ⊂ S,
the evolutionary replicator dynamic with noise [43] takes the form of

dPs

dτ
(S̄) =

∫
S̄
(πA(s′, Pt)− πA(Ps, Pt))Ps(ds′) + δS(S̄), (15)

for some time scale τ and a stochastic term δs(S̄). Similarly, the evolution of a subset of defending
strategies T̄ ⊂ T is given by

dPt

dτ
(T̄) =

∫
T̄
(πD(t′, Ps)− πD(Pt, Ps))Pt(dt′) + δT(T̄). (16)

The Equations (15) and (16) fully govern the evolution of the attacker and defender populations.
The noise terms δS(S̄) and δT(T̄) introduce random fluctuations in the evolution of the attacker and
defender populations, respectively.

4.4. Numerical Scheme

We carry out numerical experiments in order to provide insight into the evolutionary dynamics
of the confidentiality game and to demonstrate how it can be used in informing AMI security. To this
end, we discretize the strategy spaces and derive a simple but computationally effective numerical
scheme for the replicator equation.
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To solve (15) and (16) numerically, we discretize the N-dimensional strategy spaces S and T.
An attacking strategy is represented by

sk =

(
k1

K
, . . . ,

kN
K

)
, ki ∈ {0, . . . , K}. (17)

The i’th element of the vector sk represents the degree (or severity) of attack aimed at node i.
We impose a budget constraint

1
K

N

∑
i=1

ki ≤ 1 (18)

to ensure that each attacker only has a finite amount of resources, i.e., cannot fully attack every node at
once. Similarly, a defending strategy is represented discretely as

tk =

(
k1

K
, . . . ,

kN
K

)
, ki ∈ {0, . . . , K}. (19)

Similar to the attackers, the defenders also have a budget constraint

1
K

N

∑
i=1

ki ≤ Y (20)

imposed on their valid strategy space. This constrain ensures that the defenders cannot fully defend
every node in the network and need, therefore, to select the strategy that provide the highest
possible payoff.

It is convenient to introduce the discretized strategy space, i.e., the list of all possible strategies
that also adheres to the budget constraint. We can denote the discretized attacker strategy space as

ΩK
S =

{
k = (k1, . . . , kN) : ki ∈ {1, . . . , K}, 1

K

N

∑
i=1

ki ≤ BS

}
, (21)

and, similarly, the discretized defender strategy space as

ΩK
T =

{
k = (k1, . . . , kN) : ki ∈ {1, . . . , K}, 1

K

N

∑
i=1

ki ≤ BT

}
. (22)

In the discrete setting the population of attackers and defenders can be represented as a probability
distribution over the discrete strategy spaces. In particular, the population of attackers is represented
by the probability distribution

Ps(sk) ∈ [0, 1], ∑
k∈ΩK

S

Ps(sk) = 1, (23)

and the defender population is represented as

Pt(tk) ∈ [0, 1], ∑
k∈ΩK

T

Pt(tk) = 1. (24)

Using this representation, the expected payoff for an attacker and defender can be written in
the form

πA(s, Pt) = ∑
k∈ΩK

T

UA

(
s, tk

)
Pt

(
tk
)

(25)
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and
πD(t, Ps) = ∑

k∈ΩK
S

UD

(
t, sk

)
Ps(sk), (26)

respectively. Similarly, the average payoff for the attacker and defender populations can then be
written as

σA(Ps, Pt) = ∑
k∈ΩK

S

πA(sk, Pt)Ps(sk) (27)

and
σD(Pt, Ps) = ∑

k∈ΩK
T

πD(tk, Pst)Pt(tk), (28)

respectively.
Finally, the discrete versions of the population replicator equations take the form

dPs

dτ
(sk) = (πA(sk, Pt)− σA(Ps, Pt))Ps(sk) + δk

s (29)

for the attackers and
dPt

dτ
(tk) = (πD(tk, Ps)− σD(Pt, Ps))Pt(tk) + δk

t (30)

for the defenders.
Given initial attacker and defender populations P(0)

s and P(0)
t , respectively, the i’th generation of

attackers and defenders, P(i)
s and P(i)

t , are computed iteratively according to the scheme

P(i)
s (sk) = P(i−1)

s (sk) + ∆τ(πA(sk, P(i−1)
t )− σA(P(i−1)

s , P(i−1)
t ))P(i−1)

s (sk) + ∆τ δk
S, (31)

P(i)
t (tk) = P(i−1)

t (tk) + ∆τ(πD(tk, P(i−1)
s )− σD(P(i−1)

t , P(i−1)
s ))P(i−1)

t (sk) + ∆τ δk
T , (32)

where ∆τ is the time step length between each generation. For numerical stability, positivity of P(i)
s

and P(i)
t is enforced after each step, and the populations are re-normalized.

5. AMI Case Study

5.1. Simulation Setup

We consider a case study with a small but realistic AMI structure consisting of 15 nodes with
edges shown in Figure 2 and node parameters given in Table 1. All leaf nodes represent meters.
The intermediate nodes between the head-end system and the leaf nodes act either as a pure collector
aggregating data from its child nodes, or as a hybrid collector/meter. We assume that the value of
the information aggregated at each node the sum of any information generated at the node (if it is a
meter) and the information aggregated from child nodes. The cost weights of attacking and protecting
data on a node i are set to 0.2 and 0.05, respectively. These weights are based upon the original work
of Ismail et al. [25]. We used a simular network configuration. However, we removed some leaf
nodes in order to limit the strategy space. Further, we investigated several options regarding the
defender’s budget.

The attacker’s budget is set to 1.0 and is the same value for all simulations. Regarding the
defender’s budget, we vary the budget as 1.0, 2.0, and 3.0. The simulation results are presented
separately for different values of the defender’s budget.
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Table 1. Case study parameters.

Node vi CA,i CD,i s∗1 t∗1 s∗2 t∗2 s∗3 t∗3
#1 33.00 6.60 1.65 0.396246 0.51805 0.373106 0.524613 0.364412 0.536942
#2 15.00 3.00 0.75 0.072595 0.04662 0.09603 0.107789 0.089545 0.511544
#3 18.00 3.60 0.90 0.060055 0.05209 0.054538 0.48788 0.060831 0.515485
#4 3.00 0.60 0.15 0.042049 0.03001 0.043214 0.074903 0.045137 0.12042
#5 12.00 2.40 0.60 0.046897 0.029263 0.049434 0.07387 0.053685 0.119965
#6 9.00 1.80 0.45 0.044304 0.028329 0.046061 0.071233 0.049054 0.119792
#7 9.00 1.80 0.45 0.041939 0.018402 0.043156 0.065708 0.045231 0.119011
#8 3.00 0.60 0.15 0.026952 0.04108 0.026954 0.077835 0.026961 0.121616
#9 3.00 0.60 0.15 0.026952 0.04108 0.026954 0.077835 0.026961 0.121616
#10 3.00 0.60 0.15 0.026952 0.04108 0.026954 0.077835 0.026961 0.121616
#11 3.00 0.60 0.15 0.037328 0.035544 0.036896 0.074586 0.036151 0.119706
#12 3.00 0.60 0.15 0.037328 0.035544 0.036896 0.074586 0.036151 0.119706
#13 3.00 0.60 0.15 0.046802 0.027631 0.046602 0.070442 0.046307 0.117527
#14 3.00 0.60 0.15 0.046802 0.027631 0.046602 0.070442 0.046307 0.117527
#15 3.00 0.60 0.15 0.046802 0.027631 0.046602 0.070442 0.046307 0.117527

HES1

C2 C3

4 M/C5 M/C6 C7

8 9 10 11 12 13 14 15

Figure 2. The Advanced Metering Infrastructure (AMI) tree structure used in the case study.
It contains the head-end system (HES). The intermediate nodes are either pure Collectors (C) or
hybrid Meter/Collectors (M/C). The leaf nodes are meters.

5.2. Evaluation Metrics

To better interpret the results from the evolutionary game and the evolution of attacker and
defender strategies over time, we consider the following generation-dependent game metrics.
The population-averaged attack-rate for node i is given by

Ai = ∑
k∈ΩK

s

sk
i Ps(sk). (33)

Similarly, the population-average defense-rate for node i is given by:

Di = ∑
k∈ΩK

t

tk
i Pt(tk). (34)

To assess the success of attackers and defenders in the current population, the time-evolution of
the average payoff (27) and (28) are also monitored.

6. Results

The simulation results that show the evolution of average payoff for both defenders and attackers
are depicted in Figure 3.

The attack and defense rates for the different nodes are depicted in Figures 4–9, respectively,
for the defender’s budget equal 1.0, 2.0, and 3.0. At the start of the game, the attack and defense
resources are equally destributed between the participating nodes. Initially, there is a transient phase
where the attackers alternate between attacking the Head-End System and the intermediate collector
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nodes. The defender population responds by increasing the defense rate for the Head-End System to
the point where the attackers, on average, give up this node and instead focus on the intermediate
Collectors and Collector/Meters.

The results for the attack and defense rates show that both types of players favor nodes from
a higher aggregation level, which increase their utilities. We also observe that when the defender’s
budget increases the system distributes the new resources to the nodes that contribute more to the
defender’s payoffs. On one hand, the leaf nodes are less valuable and, thus, less effort is exerted to
protect these nodes. On the other hand, the attacker uses also less resource to attack the leafs since the
attacker better benefit by attacking nodes from a higher aggregation level. For the same aggregation
level, both players assign more resources to the nodes with higher aggregated value. The simulation
graphs show that more effort was made to protect the node 3, which has higher resource value and
also accommodates more children than the node 2. It is worth noting that the resources assigned to
defend the nodes are not linearly proportional to their respective values and that this proportion also
changes depending on the amount of the total budget assigned to the attacker.

Further, we can see that the system finds a short unstable equilibrium state that happens around
generation 70 for 1 defender, generation 60 for 2 defenders, and generation 50 for 3 defenders.
For different values of the defender’s budget, both graphs start to converge to a stable state after
approximately 80–90 generations and remain stable for more than 100 generations. For the defender,
it means that the system has defined the solution that gives the best response to the adaptive attacks
in the dynamic environment. The system, therefore, provides the adaptivity by using the replicator
dynamics. We can also conclude that the ESS is reached for this system setup.

Figure 3. Evolution graphs for average utility for the attacker and defender populations for the case
study. The results are shown for the defender’s budget equals to 1.0, 2.0, and 3.0. The x-axis presents
the generations. The y-axis presents the evolution of average utilities.
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Figure 4. Evolution graphs for average attack rate showing the results for the nodes of the case study.
The defender’s budget is equals to 1.0. The x-axis presents the generations. The y-axis presents the
evolution of average rates.

Figure 5. Evolution graphs for average defense rate showing the results for the nodes of the case study.
The defender’s budget equals to 1.0. The x-axis presents the generations. The y-axis presents the
evolution of average rates.
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Figure 6. Evolution graphs for average attack for the nodes of the case study. The defender’s budget
equals to 2.0. The x-axis presents the generations. The y-axis presents the evolution of average rates.

Figure 7. Evolution graphs for average defense rate for the nodes of the case study. The defender’s
budget equals to 2.0. The x-axis presents the generations. The y-axis presents the evolution of
average rates.
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Figure 8. Evolution graphs for average attack for the nodes of the case study. The defender’s budget
equals to 3.0. The x-axis presents the generations. The y-axis presents the evolution of average rates.

Figure 9. Evolution graphs for average defense rate for the nodes of the case study. The defender’s
budget equals to 3.0. The x-axis presents the generations. The y-axis presents the evolution of
average rates.

7. Conclusions

In this work, we modeled confidentiality attacks and defenses as an evolutionary game and
analyzed the behaviors of the attacker and the defender of the AMI system. By applying evolutionary
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game theory to this problem, we introduced an important dynamic and learning capabilities in the
behavior of both attackers and AMI nodes, to explore the space of strategies, and to select the optimal
set of solutions. We used the replicator equation to show the evolution of utilities for both type of
players. Further, we outlined how the evolutionary game model can be used to evaluate the security
threats in the AMI systems. In our simulation scenarios, we show that the solution converges to
ESS for all investigated cases. The simulations also show that the behavior of the replicator dynamic
depends not only on incentives but also on the network configuration and proportions of the protected
assets. It is important that the results of this work give us the best possible defense strategy against
evolving attacks. It allows the defender to to continuously stay ahead of the attacker in defending the
AMI nodes.

The next step in our research will be the investigation of more sophisticated scenarios, including
dynamic AMI trees. We consider that these trees can have a dynamic configuration and change over
time. A node can disconnect, connect to a new one, or a new node can be introduced. This condition
introduces more variety and dynamism to the AMI system. This problem should be taken into account
for preparing the strategy spaces. Applying the developed solution to real networks for further field
testing and validation will be part of the roadmap for implementing this solution as an industrial
toolset. Combining the evolutionary game analysis with machine learning algorithms, especially
with federated learning and autonomy, is a step forward to overcome this limitation and the scaling
problem. In our future work, we intend to evaluate and implement a combination of applying machine
learning and evolutionary game theory for modeling adaptive attack-defense dynamics. It will also
include a development of suitable quantitative metrics to evaluate game simulations.
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