
Using Block-Based Programming and
Sunburst Branching to Plan and

Generate Crisis Training Simulations

Dashley K. Rouwendal van Schijndel1(B), Audun Stolpe2, and Jo E. Hannay2

1 Department of Technology Systems, University of Oslo,
Pb. 70, 2027 Kjeller, Norway
d.k.rouwendal@its.uio.no

2 Department of Applied Research in IT, Norwegian Computing Center,
Pb. 114 Blindern, 0314 Oslo, Norway
{audun.stolpe,jo.hannay}@nr.no

Abstract. Simulation-based exercises for crisis response are difficult to
plan. We suggest an intuitive planning interface where exercise managers
can use block-based programming to create machine-readable training
vignettes. An answer set programming module interprets these vignettes
and generates all possible actions and causal relations, which are then
visualised for the exercise manager in a sunburst diagram. This allows
exercise managers to create training vignettes using visual techniques and
to see the possible results and causal relations of the trainees’ actions.
This facilitates using exercise results to adjust further vignette design.

Keywords: Simulation-based training · Block-based programming ·
Answer set programming · Visual planning

1 Introduction

Simulation-based crisis response exercises and training within military and civil-
ian organisations are often complex, and it has proven difficult to design exercises
with clear learning objectives and targeted building and assessment of skills; see
for example, [4,11,14]. To improve on this situation, an Exercise Management
& Simulation architecture (ExManSim) was proposed, where the organisational
and technical challenges concerning structured planning, execution and analysis
of exercises are explicitly addressed [5].

Existing systems for simulation-based training often focus on what objects
and interactions should be present in simulations, rather than on what skills
should be stimulated and measured [5,6]. In contrast, a central point in the
ExManSim architecture is to offer skill-stimulating events as basic building
blocks, so that exercise managers can compose simulations in terms of learn-
ing effects, rather than merely in terms of objects and their interactions.

This demands tool support that abstracts away details, so that the exercise
manager (trainer) can compose training vignettes (a series of events) designed to
c© Springer Nature Switzerland AG 2020
C. Stephanidis and M. Antona (Eds.): HCII 2020, CCIS 1226, pp. 463–471, 2020.
https://doi.org/10.1007/978-3-030-50732-9_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50732-9_60&domain=pdf
https://doi.org/10.1007/978-3-030-50732-9_60


464 D. K. Rouwendal van Schijndel et al.

stimulate the desired skills. ExManSim focuses on decision-making skills, such
as situational awareness, resource coordination and collaboration; e.g., [2]. We
propose to use block-based programming; a visual programming methodology
for composing computer programs from blocks that represent predefined func-
tionality. Here, we will use blocks designed to compose events into vignettes.

After the exercise manager has composed a vignette using block-based pro-
gramming, the vignette object information is exported to an answer set program-
ming (ASP) module. ASP allows for the creation of knowledge representation
models that can be stored in machine-readable formats. In our system, ASP runs
behind the scenes and uses the object information and basic predefined vignette
parameters to calculate valid possible sequences of events and their possible
outcomes. This stored information is then used to implement a simulation semi-
automatically on a virtual simulation platform.

In time, data collected from the trainees’ actions and interactions within the
vignettes will be used with ASP to create new block-based designs for follow-
up vignettes that focus on training aspects that need special attention. In this
manner, the system supports deliberate practice [3] and adaptive thinking [12,13]
in order to maximise learning.

2 Planning at Several Levels of Abstraction

Based on workshops with crisis response practitioners and researchers, we are
designing ExManSim to facilitate planning at several levels of abstraction. Refer-
ring to Fig. 1, think of a use case where an exercise manager at a National
Disaster Training Centre (NDTC) designs an abstract exercise template con-
sisting of a “crisis with two dependent events”. Then, handing this template
over to a National Fire Training Centre, a template “fire in indoor industrial
space” is designed by the exercise manager there. The NDTC also hands over
its abstract template to a “Hazardous Materials Safety Agency”. There, the
NDTC’s template is refined to a “handling of pressurised substance in indoor
industrial space” template. Then, for different industries and organisations, a
fire exercise manager consultant designs concrete vignettes (the lowest level in
Fig. 1. Here, one for “bin fire in airplane hangar”, “fuel puddle in garage”, and
“stove fire in industrial kitchen”, etc. Likewise, a pressurised material exercise
manager consultant designs concrete vignettes; for example “pressure tank in
factory”.

3 Vignette Design Using Block-Based Programming

Human beings are more efficient at processing visual information than textual
representation; for pointers, see [10]. Block-based programming is a popular
visual method to compose computer programs. People who have no prior skills
in computer programming can easily compose programs from predefined pieces
(blocks) of functionality. These blocks are presented visually in menus and can
be specialised for various uses in actual programs. Blocks are then assembled in



Block-Based Programming and Sunburst Branching to Plan Simulations 465

crisis with two dependent events

fire in indoor
industrial space

handling of pressurized substance in
indoor industrial space

bin fire
in airplane hangar

fuel puddle
in garage

stove fire in
industrial kitchen pressure tank in factory

Fig. 1. Levels of abstraction for vignettes

a graphical workspace to form a computer program. This technique is now used
in various products; such as Micro:bit1 and Tynker2.

Block-based programming reduces the rate of syntax-errors and increases
efficiency for individuals who are non-frequent programmers [7]. It makes pro-
gramming easier, since the coding options are available visually as in show in
Fig. 2. It is easier to create a system via recognition (since the blocks appear in
a selection menu) rather then by recall [9].

Fig. 2. Recognition-based vignette construction

Block-based programming is designed to visualise abstract syntax construc-
tions. We hold that a block-based visual programming language will also provide
crisis management personnel, who may have little or no simulation-technical
skills, with an intuitive tool for designing training vignettes. We use the generic
Blockly code library3 that allows one to create customised block languages.

In the example in Fig. 3, the exercise manager has been tasked to design
training for a stove fire in industrial kitchen (bottom level of Fig. 1) and has been
handed a template for fire in indoor industrial space (middle level of Fig. 1) by

1 https://microbit.org/.
2 https://www.tynker.com/.
3 https://developers.google.com/blockly.

https://microbit.org/
https://www.tynker.com/
https://developers.google.com/blockly


466 D. K. Rouwendal van Schijndel et al.

the National Fire Training Centre. He is therefore presented with the template
blocks for fire in indoor industrial space training pre-loaded in the vignette design
work space; see leftmost part of Fig. 3. At this level of abstraction, the type of
fire and the skill to be trained has not been selected, and the possible response
actions have not been selected. The exercise manager can then proceed to detail
the template blocks with blocks and variables for the particular fire response
training; in this case, a stove fire. In the rightmost part of Fig. 3, the exercise
manager selects blocks for a pan fire which ignites as the first crisis event. The
skill to be trained is situational awareness. Concrete responses are added as
blocks to the response template block and includes the option for the trainee to
turn off the stove, put a lid on fire (pan), turn the ventilator on and/or use a
powder-based fire extinguisher.

Fig. 3. Abstract fire vignette (left), defined fire vignette (right)

Block-based programming serves a dual purpose. First, a custom block rep-
resentation of a vignette acts as a grammar. It presents the user with a basic
vocabulary in the form of elementary blocks. These blocks are typed, and con-
straints on the types determine the well-formedness of the vignette. Moreover,
the workspace has information devices in the form of pull-down and pop-up
menus that allows one to specialise and configure blocks for specific purposes
when working at lower levels of abstraction (Fig. 1). Together, the type system,
the constraints and the information devices represent an approach to syntax
learning based on direct recognition rather than recall.

Secondly, block-based programming offers a feature to convert composite
blocks into custom code or text. We exploit this by wiring each block to a
piece of ASP code. The vignette grammar ensures that these code snippets are
compositional and add up to a logical description in ASP of the initial situation
of the training exercise. In turn, this description is fed as input to a causal theory,
also encoded in ASP, that encodes the interaction between the objects as well
as the effects of actions in the training domain. The reason for this is described
in more detail in the next section.

4 ASP and Model Output Visualisation

The block design space is hooked into an ASP representation of the salient causal
relations in the training domain. Then, ASP will compute the coherent plays, if



Block-Based Programming and Sunburst Branching to Plan Simulations 467

any, that the selected set of blocks and properties support. In fact, the computa-
tion of the vignette provides two different reasoning services. One is validation:
not all block puzzles yield playable vignettes even if they are syntactically cor-
rect. For instance, the vignette designer may decide to include a wet chemical
extinguisher if the vignette involves a fire in kitchen grease, since wet chemi-
cal extinguishers are designed for that. He may also decide to include a foam
extinguisher, which is not appropriate for grease fires, to allow the trainee to
make mistakes. However, if the designer does not select at least one effective
extinguisher, then the vignette is not successfully playable. Such a vignette with
an unattainable goal is invalid and will be rejected by the ASP computation.
The second reasoning service is to deduce or generate the different ways in which
the initial situation can evolve according to the causal theory. If presented in a
suitably friendly format, the vignette designer can gain a sense of the depth and
training value of his current block layout and can revise it when necessary.

The details of the answer set programming module itself is not the focus of
this paper. Rather, the focus is the visual user interface of the vignette design
space. The challenge from a user interface point of view is that the number of
ways a situation can develop from even a simple causal theory is usually too large
to be conveniently represented by a traditional rooted top-down or bottom-up
tree widget. More often than not, certainly for most interesting vignettes, this
is going to be a very bushy tree with a high branching factor. Our experiments
with decision trees and other tree-like structures indicate that the user will have
to scroll through very large visualisations to get an overview of the possible
outcomes; in particular to view the leaf nodes, where the success or failure of a
course of action is recorded.

In order to be useful to the designer, the plays or models generated by ASP
should be visualised in a manner that more effectively conveys the training poten-
tial of the vignette. As a minimal requirement, the visualisation should display
all the choice points; that is, all the different courses of action a trainee may
opt for and all the outcomes of the different plays; distinguishing successful from
unsuccessful ones in a single window frame.

An evolution diagram frequently used in biology for representing phylogenetic
trees [8] is the sunburst diagram.4 A phylogenetic tree represents evolutionary
relationships among organisms. The pattern of branching in a phylogenetic tree
reflects how species or other groups evolved from a series of common ancestors,
which means that the branching factor is usually considerable. A sunburst dia-
gram (also known as a ring chart, multi-level pie chart, belt chart and radial
treemap) shows hierarchies through a series of rings, that are sliced for each cat-
egory node. Each ring corresponds to a level in the hierarchy, with the central
circle representing the root node and the hierarchy moving outwards from it. The
growth in size of the number of rings is constant, irrespective of the branching
factor, since a single ring encodes all parent-child relationships in that level of
the tree. Also, due to its concentric 360◦ nature, the sunburst diagram maximizes
the use of space within a single frame.

4 https://datavizcatalogue.com/methods/sunburst diagram.html.

https://datavizcatalogue.com/methods/sunburst_diagram.html


468 D. K. Rouwendal van Schijndel et al.

Figure 4 shows a trimmed down excerpt of some ways in which the kitchen
fire vignette evolves, according to the ASP encoding of a causal theory relating,
stoves, pans, grease, fans, extinguishers, and so on.

Fig. 4. Reduced example of a sunburst diagram for the kitchen fire vignette.

The particular sunburst diagram in Fig. 4 is from the Plotly open source
graphing libraries.5 It has several attractive features that makes it a good fit
for our purposes. Not only is it capable of representing, for most realistic cases,
sufficiently large number of choice points, branches and outcomes in a single
window pane, it also adjusts the centre of the diagram interactively. That is,
when the user clicks on a segment other than the centre, the sunburst chart can
rearrange itself to make that segment the new centre. Thus, irrespective of the
size of the data set, scrolling is never needed for exploration.

Finally, note that the sunburst representation of vignettes can be made to
support both of the reasoning services mentioned above; that is both exploration
and validation. Using a colouring scheme that labels permitted states and actions
in green and prohibited ones in red (cf. [1]), an invalid vignette is one with
an entirely red outer rim. This colouring scheme offers a way of designating a
vignette as invalid, while still developing available of information about it. The
point at which a story or play becomes red, for instance, is valuable information
for debugging the Blockly layout of the vignette. This is ongoing research.

5 The Feedback Loop

A further purpose of the ExManSim architecture is that after a training has
been completed by a trainee, the system can reset and the vignette design can be
5 https://plot.ly/graphing-libraries/.

https://plot.ly/graphing-libraries/


Block-Based Programming and Sunburst Branching to Plan Simulations 469

adjusted according to the trainees’ performance. The trainees can then undergo
the training once more with the vignette adapted to their new skill levels.

The data collection that takes place during training will give valuable insight
of what the future focus of the trainees’ training should be. In an example of the
kitchen fire, it may be that the trainees are not sufficiently knowledgeable about
different types of fire extinguishers, and therefore in the next training round
there could be more focus on this particular facet of training. The premise is
that you can automate this training adaptive system via the ASP module.

A topic that we are actively researching at the time of writing, is to use the
green/red colouring scheme that was mentioned toward the end of the previous
section for scoring plays. The green/red feature, a version of which we have
already implemented, is a kind of deontic overlay that is grafted onto the causal
theory. It describes sufficient conditions for classifying actions as either green
(acceptable, legal) or red. The ASP engine propagates these conditions over
complex states and transitions, based on the rules in the causal theory. In itself,
this is not a new idea, but derives from (cf. [1]). What is novel, to the best
of our knowledge, is the idea of using the deontic overlay for scoring plays. In
the simplest case, this is matter of subtracting the sum total of red states and
actions from the green ones to obtain a crude measure of the overall quality of
the course of action pursued in that play.

The scores will be used for solution optimisation and dynamic assignment of
difficulty levels, and will be applied in repeated rounds of training. This will give
an effective record of the progress a trainee is making and give insight to the
effectiveness of the various parts of the training overall. This addresses a basic
challenge in simulation-based training.

6 Final Remarks

To summarise the process that ExManSim supports: Exercise regulatory bod-
ies provide basic requirements and exercise templates. Domain-specific exercise
managers are directed to a block-based vignette design tool where abstract block-
based vignettes that represent the above exercise templates have already been
created. The exercise manager specifies domain-specific block-based details as
desired in the block-based template vignette. When this is completed, the block-
based vignette design is passed in machine-readable format to an answer set pro-
gramming module, which creates an outline of all the possible actions a trainee
can take in the vignette. Scoring methods are built into the system to help assess
a trainee’s performance. The exercise manager will then get a visual overview
of the answer set model in a sunburst diagram, where he can decide whether to
accept the generated model or go back and adjust the vignette design. When
the vignette is accepted, the virtual training scene and vignette is generated in
a simulation, and the virtual training can take place. The data from the train-
ing is collected, and after the training has ended, the design and training cycle
can repeat, but now with specific recommendations which can be applied to the
vignette design for greater customisation toward the needs of the trainee.



470 D. K. Rouwendal van Schijndel et al.

We postulate that this feedback loop of training, performance analysis and
retraining at the exercise manager’s control through an easy-to-use, block-based
vignette design methodology and real-time visualisation of the trainees possible
actions, will allow for a form of simulation-based training that creates greater
training efficiency, feedback and record keeping.

References

1. Craven, R., Sergot, M.: Agent strands in the action language nC+. J. Appl. Logic
6(2), 172–191 (2008). Selected papers from the 8th International Workshop on
Deontic Logic in Computer Science

2. Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review.
In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Mea-
surement, pp. 13–32. Lawrence Erlbaum Associates Publishers, Mahwah (2000)

3. Ericsson, K.A.: The influence of experience and deliberate practice on the develop-
ment of superior expert performance. In: Ericsson, K.A., Charness, N., Feltovich,
P.J., Hoffman, R.R. (eds.) The Cambridge Handbook of Expertise and Expert
Performance, pp. 683–703. Cambridge University Press, Cambridge (2006)

4. Grunnan, T., Fridheim, H.: Planning and conducting crisis management exercises
for decision-making: the do’s and don’ts. Eur. J. Decis. Process. 5, 79–95 (2017)

5. Hannay, J.E., Kikke, Y.: Structured crisis training with mixed reality simulations.
In: Proceedings of 16th International Conference Information Systems for Crisis
Response and Management (ISCRAM), pp. 1310–1319 (2019)

6. Hannay, J.E., van den Berg, T.W.: The NATO MSG-136 reference architecture
for M&S as a service. In: Proceedings of NATO Modelling and Simulation Group
Symposium on M&S Technologies and Standards for Enabling Alliance Interoper-
ability and Pervasive M&S Applications (STO-MP-MSG-149). NATO Science and
Technology Organization (2017). paper 13

7. Holwerda, R., Hermans, F.: A usability analysis of blocks-based programming edi-
tors using cognitive dimensions. In: Proceedings of 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE Computer
Society (2018)

8. Letunic, I., Bork, P.: Interactive tree of life (iTOL): an online tool for phylogenetic
tree display and annotation. Bioinformatics Adv. Access 23(1), 127–128 (2006)

9. Monig, J., Ohshima, Y., Maloney, J.: Blocks at your fingertips: blurring the line
between blocks and text in GP. In: Proceedings of 2015 IEEE Blocks and Beyond
Workshop. IEEE (2015)

10. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

11. Pollestad, B., Steinnes, T.: Øvelse gjør mester? Master’s thesis, University of Sta-
vanger, Department of Media and Social Sciences (2012). in Norwegian

12. Pulakos, E.D., Arad, S., Donovan, M.A., Plamondon, K.E.: Adaptibility in the
work place: development of a taxonomy of adaptive performance. J. Appl. Psychol.
85(4), 612–624 (2000)



Block-Based Programming and Sunburst Branching to Plan Simulations 471

13. Shadrick, S.B., Lussier, J.W.: Training complex cognitive skills: a theme-based app-
roach to the development of battlefield skills. In: Ericsson, K.A. (ed.) Development
of Professional Expertise, pp. 286–311. Cambridge University Press, Cambridge
(2009)

14. Skarpaas, I., Kristiansen, S.T.: Simulatortrening for ny praksis: Hvordan simula-
tortrening kan brukes til å utvikle hærens operative evne. Tech. rep. Work Research
Institute (2010). in Norwegian


	Using Block-Based Programming and Sunburst Branching to Plan and Generate Crisis Training Simulations
	1 Introduction
	2 Planning at Several Levels of Abstraction
	3 Vignette Design Using Block-Based Programming
	4 ASP and Model Output Visualisation
	5 The Feedback Loop
	6 Final Remarks
	References




